

# **DELIVERABLE**

# **D2.4 Pilot Operations Plan**

| Project Acronym:       | COMPAIR                                                                                                                                                  |     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Project title:         | Community Observation Measurement & Participation in AIR Science                                                                                         |     |
| Grant Agreement No.    | 101036563                                                                                                                                                |     |
| Website:               | www.wecompair.eu                                                                                                                                         |     |
| Version:               | 1.2                                                                                                                                                      |     |
| Date:                  | 30 March 2023                                                                                                                                            |     |
| Responsible Partner:   | ECSA                                                                                                                                                     |     |
| Contributing Partners: | ATC, DV, Pilot partners (SDA, EAP, inter 3, VMM and DAEM)                                                                                                |     |
| Reviewers:             | 21c, Pilot partners  External reviewers: Gitte Kragh, Joep Crompvoets, Karen Van Campenhout, And Stott, Otakar Čerba, Karel Jedlička, Martine Van Poppel | rew |
| Dissemination Level:   | Public                                                                                                                                                   | Х   |
|                        | Confidential, only for members of the consortium (including the Commission Services)                                                                     |     |



# **Revision History**

| Version | Date       | Author                                                                                                                                  | Organi<br>sation                    | Description                                                                                                                                              |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1     | 15/08/2022 | Carolina Doran, Beatriz<br>Noriega-Ortega                                                                                               | ECSA                                | First draft                                                                                                                                              |
| 0.2     | 16/08/2022 | Marina Klitsi                                                                                                                           | ATC                                 | Feedback                                                                                                                                                 |
|         | 16/08/2022 | Antonia Shalamanova Vlatko Vilović Milena Agopyan Inge Smets Christophe Stroobants Celien Van Gorp Ilia Christantoni, Dimitra Tsakanika | SDA<br>inter3<br>EAP<br>VMM<br>DAEM | Contributed with content                                                                                                                                 |
|         | 16/08/2022 | Gert Vervaet<br>Lieven Raes                                                                                                             | DV                                  | Feedback                                                                                                                                                 |
|         | 16/08/2022 | Jiri Bouchal                                                                                                                            | ISP                                 | Feedback                                                                                                                                                 |
| 0.3     | 24/08/2022 | Carolina Doran, Beatriz<br>Noriega-Ortega                                                                                               | ECSA                                | Revised document<br>Ready for review                                                                                                                     |
| 0.4     | 05/09/2022 | Pavel Kogut                                                                                                                             | 21c                                 | Content on how to manage expressions of interest                                                                                                         |
| 0.5     | 07/09/2022 | Lieven Raes<br>Antonia Shalamanova                                                                                                      | DV<br>SDA                           | Review                                                                                                                                                   |
| 0.6     | 07/09/2022 | Joep Crompvoets<br>Andrew Stott<br>Gitte Kragh<br>Otakar Čerba<br>Karel Jedlička<br>Martine Van Poppel<br>Karen Van Campenhout          | Expert pane                         | Review                                                                                                                                                   |
| 1.0     | 12/09/2022 | Carolina Doran, Beatriz<br>Noriega-Ortega                                                                                               | ECSA                                | Final version                                                                                                                                            |
| 1.1     | 24/02/2023 | Beatriz Noriega-Ortega<br>Martine Delannoy                                                                                              | ECSA<br>DV                          | Changes after the Review meeting: - in section 1 and 2 (remove redundancy) - Changes in KPIs - Added description of LSES                                 |
| 1.2     | 30/03/2023 | Pilot partners<br>Martine Delannoy<br>Beatriz Noriega Ortega                                                                            | DAEM<br>VMM<br>SDA<br>DV<br>ECSA    | 2nd revised version integrating feedback from the period 1 Review meeting: • Text revisions • Updated the timelines • Addition of pilot comparison table |



## **Table of Contents**

| Executive Summary                                  | 6  |
|----------------------------------------------------|----|
| 1. Introduction                                    | 8  |
| 2. Key Pilot Stages                                | 9  |
| 2.1. The COMPAIR strategy                          | 9  |
| 2.2. Groundwork                                    | 9  |
| 2.3. Closed Round                                  | 11 |
| 2.4. Open Round                                    | 13 |
| 2.5. Public Round                                  | 16 |
| 2.6. The COMPAIR technology                        | 22 |
| 3. Inclusion of Lower Socio-Economic Status Groups | 23 |
| 4. Pilots Operational Plans                        | 26 |
| 4.1. Berlin                                        | 30 |
| 4.1.1. Milestones                                  | 31 |
| 4.1.2. Challenges & Recommendations                | 34 |
| 4.2. Flanders                                      | 36 |
| 4.2.1. Milestones                                  | 37 |
| 4.2.2. Challenges & Recommendations                | 40 |
| 4.3. Sofia and Plovdiv                             | 41 |
| 4.3.1. Milestones                                  | 42 |
| 4.3.2. Challenges & Recommendations                | 45 |
| 4.4. Athens                                        | 47 |
| 4.4.1. Milestones                                  | 47 |
| 4.4.2. Challenges & Recommendations                | 51 |
| 4.5. Pilots commonalities and overarching goals    | 52 |
| 4.6. Managing expressions of interest              | 55 |
| 5. Conclusion                                      | 57 |
| 6. References                                      | 59 |

## **List of Tables**

| Table 1 - Actions that are planned for the closed round per pilot                  |
|------------------------------------------------------------------------------------|
| Table 2 - Actions that are planned for the open round                              |
| Table 3 - Actions that are planned for the public round per pilot                  |
| Table 4 - EPICS overview                                                           |
| Table 5 - Technical enablers supporting CS activities which will be used per pilot |
| Table 6 - Challenges and corresponding recommendation for all pilots               |
| Table 7 - Planned milestones of Berlin pilot activities at each pilot stage        |



- Table 8 Challenges and corresponding recommendations for the Berlin pilot
- Table 9 Planned milestones of Flanders pilot activities at each pilot stage
- Table 10 Challenges and corresponding recommendations for the Flanders pilot
- Table 11 Planned milestones of Bulgaria pilot activities at each pilot stage
- Table 12 Challenges and corresponding recommendations for the Bulgaria pilot
- Table 13 Planned milestones of Athens pilot activities at each pilot stage
- Table 14 Challenges and corresponding recommendations for the Athens pilot

## **List of Figures**

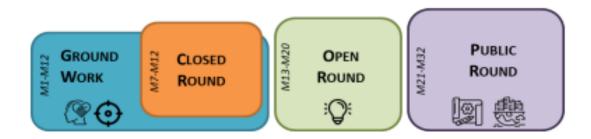
- Figure 1 Different phases of the COMPAIR strategy taken from the GA
- Figure 2 Design thinking concept diagram as shown in the Grant Agreement
- Figure 3 Spread of CS pilot types for assessment on best environment for success
- Figure 4 Berlin pilot stakeholder network.
- Figure 5 Flanders Stakeholder Network.
- Figure 6 Sofia/Plovdiv Stakeholder Network.
- Figure 7 Athens Stakeholder Network.
- Figure 8 Pilot comparison table
- Figure 9 Subsection of the mismatch table
- Figure 10 Snapshot of the flowchart of expression of interest.

### **List of Abbreviations**

| Abbreviation | Meaning                                  |
|--------------|------------------------------------------|
| AQ           | Air quality                              |
| AR           | Augmented reality                        |
| ВС           | Black carbon                             |
| CS           | Citizen Science                          |
| CO2          | Carbon dioxide                           |
| DEVA         | Dynamic Exposure Visualisation app       |
| DEVD         | Dynamic Exposure Visualisation dashboard |
| DIY          | Do it yourself                           |
| DPO          | Data Protection Officer                  |
| DT           | Digital Twins                            |
| EC           | European Commission                      |
| ECSA         | European Citizen Science Association     |
| EEA          | European Environmental Agency            |



| Eol   | Expression of Interest                                                       |
|-------|------------------------------------------------------------------------------|
| EPICS | a large user story which is too big to fit into a sprint                     |
| GA    | Grant Agreement                                                              |
| GDPR  | General Data Protection Regulation                                           |
| IoT   | Internet of Things                                                           |
| KPIs  | Key Performance Indicators                                                   |
| MICS  | Measuring Impact of Citizen Science                                          |
| MORRI | Monitoring the evolution and benefits of responsible Research and Innovation |
| NGO   | non-governmental organisation                                                |
| NO2   | Nitrogen dioxide                                                             |
| O3    | Ozone                                                                        |
| PM    | Particulate matter                                                           |
| PMD   | Policy Monitoring dashboard                                                  |
| PR    | Public relations                                                             |
| SES   | Socio-Economic Status                                                        |
| SME   | Small and medium-sized enterprise                                            |
| STEM  | Science, Technology, Engineering and Mathematics                             |
| TBD   | To be decided                                                                |
| UAEG  | University of the Aegean                                                     |
| UI    | User interface                                                               |
| VMM   | Flanders Environment Agency                                                  |




## **Executive Summary**

The Pilot Operations Plan aims to establish useful guidelines with key stages and recommendations for all pilots to successfully contribute towards COMPAIRs mission - increase societal engagement in the fight for clean air. In this deliverable, as we slowly move from the ground work (preparatory activities for the pilots) towards the closed round (where we introduce stakeholders to the pilots planned activities) and open rounds (where public facing activities begin) we build up on the project's previous work to define a robust pathway for overcoming crucial challenges and build bridges between our stakeholder network, policy makers, enterprises like sensor providers, community leaders, citizen science practitioners and finally citizen science participants.

The project's methodology strongly builds upon COMPAIR's <u>vision</u> that all stakeholders from the quadruple helix have something valuable and unique to contribute and thus should all be empowered to work together on COMPAIR's mission. Centred around the principles of design thinking the process goes through 5 different phases. Empathise, Define, Ideate, prototype and test. These steps are not linear and have been translated into 4 rounds where each of our pilots (Berlin, Flanders, Sofia, Plovdiv and Athens) has developed a set of actions (Fig1). We further expand on this methodology in the introduction.

Figure 1 - Different phases of the COMPAIR strategy taken from the GA; Ground Work (M1 - M12), Closed Round (M7 - M12), Open Round (M13 - M20) and Public Round (M21 - M32).



Based on the Stakeholder mapping (D2.1), mapping of CS initiatives (D2.2) and policy canvas (D2.3) we were able to create a clear picture of where each pilot stands and where **higher focus is needed** for successfully reaching the project's goals, namely of increasing awareness of local and global air quality challenges whilst fostering change towards more environmentally friendly behaviours and greater inclusion of lower Socio-Economic Status groups (SES):

- Close **communication with the technical partners** should continue to be fostered as to ensure the technology meets the citizen science participant's needs.
- Cross pilot communication is also highlighted as an important action as a way of
  increasing understanding and effectiveness of the different strategies and their
  outcomes as a whole.
- Another key identified recommendation shared by all pilots is the need to further work on defining both the terminology and engagement strategies when it comes to increasing the participation of lower SES groups.



 Finally we also highlight the need to monitor and update our stakeholder networks throughout the project life.

COMPAIR has an ambitious aim of having ½ of citizen science participants belong to lower socio-economic status groups. Socio-economic status is defined as a measurement of one's combined economic and social status. 3 common measures are used as a basis: the level of education, the level of income and the occupational background. Lower SES groups are those actually or potentially to be targeted by public policies at local, national or EU level for specific actions. The specificities of these groups might differ in each of the pilot areas. Given the importance of involving lower Socio-Economic Status groups we devoted a section to discuss this (section 3). Here we further define a set of important actions that must also take place, such as better definitions and indicators, together with internal awareness raising through communication activities, training sessions and workshops.

Finally we summarise a set of inspirations for future work that we wish to share with the citizen science community and all those running projects or showing interest in air quality, and eager to work with an inclusive mindset. More specifically we highlight the importance of <a href="ECSA\*s">ECSA\*s</a> 10 <a href="principles">principles</a> of <a href="citizen science">citizen science</a> as a way to encourage CS practitioners to take responsibility for moral and ethical concerns and to actively work towards providing inclusive initiatives. A key element of this section is the importance of designing inclusive methodologies. For <a href="COMPAIR">COMPAIR</a> in particular the inclusion of lower SES groups is a core aim, and thus we share our views on the importance of their inclusion for making CS initiatives meaningful and sustainable.

This deliverable is a first starting point to define pilots actions throughout the project. However, it is not meant to be static and throughout the project we will regularly revisit it and remind ourselves of our specific aims and update our action tables and KPIs accordingly.

In the version 1.2 of this deliverable, we have updated the timetables of pilot activities. We included a comparative table where all pilot cases are analysed in the context of the project. Other small clarifications were included in the text.



## 1. Introduction

A key challenge **COMPAIR** aims to address is the need for a greater and more inclusive societal engagement in the fight for better air quality. Towards that goal, this deliverable sets useful guidelines describing the 'What', 'When' and 'How' for each pilot city to successfully run their citizen science programmes.

COMPAIR pilots a multi-pronged methodology that includes citizen science activities, low-cost air sensors and advanced digital tools in four geographically varied locations across Europe: Sofia and Plovdiv in Bulgaria, the region of Flanders in Belgium, Athens in Greece, and Berlin in Germany. The work described here builds heavily (but not exclusively) on the 3 previous deliverables from WP2. The value network canvas (D2.1) was the starting point where all the pilot partners mapped crucial stakeholders to engage (quadruple helix, including citizen science initiatives) and whose contribution was considered key in order to reach our project's goals. As an obvious follow up a Citizen Science Landscape Review (D2.2) was conducted to assess previous and existing CS initiatives in each of the pilot areas. From this we could learn what had already been done, what challenges had been encountered and overcome and which ones were still a threat (D7.1 - Participation risks and compliance also provided useful insight here). Finally, a Policy Review Landscape (D2.3) was also conducted where relevant European policies and those local to the pilots were identified, together with important features to be considered from COMPAIR in order to improve the policy alignment and impact of the pilots.

These are described in more detail in the groundwork section (2.2)

There are four key pilot stages: Groundwork, Closed Round, Open Round and Public Round (Fig 1). Groundwork involves all the research and setting up activities necessary for the preparation of the pilot activities; the Closed Round (where we are currently) starts internal testing procedures within the consortium; the Open Round marks the beginning of the CS initiatives in all pilots expanding into the Open Round where there will be a higher focus on prototyping and testing. These phases are better described in the next section (section 2).

#### This Pilot Operation Plan will:

- Highlight key project milestones with a higher focus on the work of all pilot regions to date that has resulted in building a robust stakeholder network, delivering co-creative workshops and co-defining their pilots needs and actions to take, together with identifying existing challenges;
- Update the milestones that remain to be reached at the moment, but are planned to be completed and at what stage should they be completed;
- Offer an overview of the pilot stages and what is accomplished at each one of them.
- Present the challenges that each pilot location faces, as well as recommendations to overcome them;
- Discuss specific challenges related to the engagement of lower SES groups.
- Provide useful recommendations to overcome the above mentioned challenges.



# 2. Key Pilot Stages

This section provides a general summary of the different stages that have started and are planned for all the pilot activities together with some important information on our engagement strategy and the technology we are using. From the beginning of the project, pilots and pilot supporting partners have met on a regular basis to co-create the development of several key stages in pilot development described below. This process does not end here and this deliverable should be used as a guide throughout pilots' works. Furthermore, in order to ensure it is kept updated all action tables will be monitored and revised on a regular basis (on our monthly pilot meetings) by all pilot leads and supporters together with the project coordination team.

## 2.1. The **COMPAIR** strategy

COMPAIR puts a high focus on stakeholder engagement because we can only produce real change when everyone is equally engaged and motivated. Towards that end it is really important for pilots to have an understanding of the policy agenda and the associated pipeline of initiatives that can be coupled with demonstrations of COMPAIR tools, results and experiences. Concretely demonstrating the value of citizen science ambitions to strengthen delivery on the policy agenda in an inclusive fair manner can potentially contribute to strengthening buy-in of policy makers. Policy makers will be asked to provide feedback on what they find most useful, and what additional value they would like to see in the future.

At the pilot level, the combined Design thinking - Quadruple Helix approach is transposed into an operational framework that covers 4 phases: Groundwork, Closed Round, Open Round and Public Round each described in detail below.

### 2.2. Groundwork

The Groundwork involves research and project set up activities needed to develop and prepare for CS experiments. Here, stakeholders **empathise** (i.e. try to understand what each group brings to the process) and define challenges that may keep some groups from engaging, while looking for solutions, define needs, and co-design a way forward. For example, citizens define target locations and training needs; businesses - market opportunities and needs for business intelligence; researchers - sensor needs, behavioural pathways and CS protocols; policy makers - policy issues around which various measures can be explored and proposed based on priorities, advise on engagement of specific groups and finally charities help develop the best engagement strategies such that we are able to have a fair representation of society in our participants groups. Naturally this process continues through subsequent rounds.

The groundwork started at the beginning of the project when all partners were involved in mapping their stakeholder network and inviting them to participate in COMPAIR.



The results of this mapping can be found on <u>D2.1 Stakeholder mapping and pilot scenarios</u>. Where stakeholders were categorised them according to the following criteria:

- Their interest of air quality (High-Low-Medium);
- Their political power to affect policies (High-Low-Medium);
- The stakeholder category they represent in the quadruple helix.

More details on this can be found in <u>D2.1</u> however we highlight these categories here as they should be updated throughout our engagement of CS participants to ensure nobody is being excluded. More categories may be added and/or these definitions expanded.

COMPAIR is a citizen science project, thus an important part of the groundwork was mapping CS initiatives that had taken place in all pilot locations so that we could learn from them. This can be found in deliverable <a href="D2.2">D2.2</a> Other CS initiatives in pilot regions. D2.2 provides a list of CS projects that took place or are still running in each of the pilot's countries. Together with a detailed list of recommendations based on a critical analysis of each of the countries samples. Deliverable <a href="D7.1">D7.1</a> Guidelines and best practices for CS engagement also conducted during the groundwork phase provides useful strategies, recommendations and techniques to manage participation risks and correct use of the outcomes related to the different types of initiatives. Relevant details from both D2.2 and D7.1 are summarised in the pilot section below (Section 2).

In order to strengthen policy achievement, deliverable <a href="D2.3 Policy Landscape">D2.3 Policy Landscape</a> <a href="Review">Review</a> identified relevant public measures (strategies, plans, policies etc.) in each pilot location that can be influenced by citizen science (CS)/COMPAIR results. The policy landscape review on the European level contains a review of the reports and guidelines of the European Commission (EC) and European Environmental Agency (EEA) as well as the most relevant citizen science-related policy documents (reports, plans, strategies, white and green papers, etc.).

Finally, when working with a diversity of participants it is paramount to consider ethics and data protection aspects. Deliverables **D9.1 Ethics procedures and GDPR** and **D9.2 POPD - Requirement No. 2** (both confidential) bring to our awareness a set of measures we must put in place before we start the open and public rounds.

The next sections define in greater detail the Closed, Open and Public rounds, including a list of actions each pilot is working towards. These actions (tables 1, 2 and 3) were developed in combination with the project coordination and each pilot at the proposal writing time. As the Ground work started and pilots built their stakeholder network and organised their co-creative workshops (more detail on section 4), further input was provided and a more refined list of actions and KPIs was established. Some pilot leads have more experience than others, thus co-creation amongst the different pilots was also fundamental. This list is not static and will continuously be updated as the project progresses.



#### 2.3. Closed Round

Despite the overlap of this round with the groundwork, during this round there is a higher focus on introducing CS to participants in each pilot to the project, its aims and all the sensor technologies being developed. Currently this process is ongoing in stages with increasing scope and complexity and opportunities for co-design and co-creation are currently running. Specific outcomes of these for each pilot can be found in section 3.

More specific to this round is the equipment testing, initial calibrations and potential target locations are being inspected. In this round we are testing the first technical outputs - the Dynamic Exposure Visualisation App (DEVA), the policy monitoring dashboard and the CO2 dashboard - before we invite citizen science participants to take part in COMPAIR. As the closed round is preparatory in nature, data collection at this stage will be limited, and it will be the project partners who will participate following a series of predefined scenarios while in the field.

Table 1 - Actions that are planned for the closed round per pilot. These are further detailed in section 3 for each pilot.

| WHAT                                                                                                  | HOW                                                                                                                                                                                                                                                                         | PILOT    | KPIs                                                           |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|
| Benchmark study of<br>commercially available<br>(mobile) air quality<br>sensors for BC, PM and<br>NO2 | Under lab conditions and in the field. There is also a limited mobile test phase, in which the mobile performance of the sensors is tested by attaching them to a cargo bike                                                                                                | Flanders | One report from the benchmark study                            |
| Make a plan to measure<br>the effects of a mobility<br>plan in Ghent                                  | See which<br>neighbourhood is eligible<br>(diverse neighbourhood<br>with the possibility to<br>reach lower SES groups,<br>timing)                                                                                                                                           | Flanders | One plan to monitor the potential effects of the mobility plan |
| Identify locations for a schoolstreet                                                                 | The city of Roeselare was planning to introduce a school street so VMM suggested they participate in COMPAIR. Roeselare will determine where the school street will be implemented.  The case of Herzele was submitted by SOLVA, who decided after a preliminary study that | Flanders | At least one location & monitoring plan for a school street    |



| WHAT                                                                                                 | HOW                                                                                                                                                                                                                       | PILOT                | KPIs                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      | Herzele has suitable locations for implementing a school street.                                                                                                                                                          |                      |                                                                                                                                                                                  |
| Identify the pilot locations<br>(which schools will be<br>included, where they are<br>located, etc.) | Location scouting -<br>walking around the city<br>and investigating the AQ<br>conditions + traffic<br>around the location                                                                                                 | Sofia and<br>Plovdiv | <ul> <li>Target 4 city areas not covered by official measurements</li> <li>Target 4 neighbourhoods that have problematic air quality</li> </ul>                                  |
| Pilot implementation in locations of the city                                                        | Identification of districts within the city that meet the requirements of the pilot and perform actions in these districts for recruitment of end-users and promotion of the project (training, informational visits etc) | Athens               | <ul> <li>Target 2 districts taking also into account SES criteria (Kispeli and Neos Kosmos)</li> <li>Target a small group of 4-5 end-users in each of these districts</li> </ul> |
| Demonstrate the impact of local measures/policy on AQ and mobility                                   | By using the right communication tools and messages to spread to citizens; keeping all relevant stakeholders informed and up to date with the project progress and developments thus ensuring acceptance & approval       | Sofia, Plovdiv       | 10 relevant policy measures targeted by the project  Cloud calibration to uplift accuracy of citizen science data                                                                |
| Experimental design and mockups of COMPAIRs technology                                               | User requirements, functional design, pilot city contacts, partners and workshops. Validating user requirements and functional designs with relevant stakeholders and providing timely feedback to tech team              | All pilots           | Designs of COMPAIR<br>technology is agreed<br>upon and validated by all<br>pilot teams                                                                                           |
| Involve representatives of lower SES groups                                                          | By communicating and involving in early stage the organisations that work with minority groups and people from lower SES groups                                                                                           | All pilots           | <ul> <li>participation of<br/>vulnerable groups relative<br/>to local demographic</li> <li>Representative<br/>demographic balance<br/>(gender, age, education)</li> </ul>        |



| WHAT                                                                                                                                                                                                  | HOW                                                                                                                                                                                     | PILOT                                | KPIs                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       | Establish contact with initiatives and organisations advocating for disadvantaged groups  Through involving focus group experts and participation experts from the public organisations |                                      |                                                                                                                                                                                                                  |
| Available sensors tested<br>by the project team at<br>each of the pilot locations<br>within the different<br>scenarios suggested -<br>indoor, outdoor - work -><br>home, public transport,<br>leisure | workshops/visits                                                                                                                                                                        | Sofia, Berlin,<br>Plovdiv,<br>Athens | <ul> <li>3 sensors per pilot location</li> <li>Telraam sensors tested on 3 locations (Berlin)</li> <li>SODAQ Air and NO2 sensors tested on at least 2 locations (Berlin)</li> </ul>                              |
| pre-pilot implementation to finetune tools and fix bugs                                                                                                                                               | training of COMPAIR partners to the tools from tech team                                                                                                                                | Sofia,Plovdiv<br>Athens              | <ul> <li>1 DIY Sensor Citizen</li> <li>Science Lab established</li> <li>50 sensor devices</li> <li>assembled by citizens</li> <li>Average DIY device</li> <li>costs around €300 each</li> <li>or less</li> </ul> |
| preparatory visits to<br>handover sensors and<br>demonstrate tools                                                                                                                                    | online and in person sessions                                                                                                                                                           | Sofia, Plovdiv                       | 50 sensor devices<br>assembled by citizens                                                                                                                                                                       |
| Testing of Carbon tools (still under development by the technical team)                                                                                                                               | Demonstration in person/visits                                                                                                                                                          | Athens                               | • internal testing of the Carbon tool development by DAEM                                                                                                                                                        |

## 2.4. Open Round

The Open Round marks the beginning of public-facing CS activities in the pilot cities. Here, pilots ideate i.e. try to form a better idea of what's actually happening (with air pollution, traffic, energy use etc.) through continuous communication with their stakeholder network, data collection, analysis and visualisation. So, for example, citizen science participants ideate by collecting data, participating in training sessions and games, and using COMPAIR tools to make sense of data. Businesses ideate by using preliminary results to identify market gaps and customer needs. Policy makers ideate by assessing the integrated



datasets (CS data plus data from official measuring stations) and their policy application in existing IoT infrastructures e.g. Digital Twins. The role of researchers at this stage is mainly to support through their participation in continuous training opportunities, although like other stakeholders they too will derive new insights from gathered data. In this round the following steps shall be followed (Table 2):

Table 2 - Actions that are planned for the open round. These are further detailed in section 3 for each pilot.

| WHAT                                                                                                        | HOW                                                                                                                                                                                                                                           | PILOT                             | KPIs                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate<br>robustness of<br>technology,<br>recruitment strategies<br>and data streams<br>visualisations | Integrating relevant<br>datasets and linking with<br>relevant projects,<br>experiments open to<br>partners/colleagues, user<br>testing                                                                                                        | All pilots                        | 2 to 3 deployments                                                                                                                                                                   |
| Measure the effect of a mobility plan in the neighbourhood "Ghent-Dampoort"                                 | Measuring the effects before and after the mobility plan: - neighbourhood (traffic and AQ measurements) -Street nearby the school that become a one-way traffic street (traffic and AQ measurements) -Traject (school routes-AQ measurements) | Flanders                          | One report of the measurements campaign                                                                                                                                              |
| Schoolstreet<br>measurements in<br>Herzele                                                                  | Measuring the effects of the schoolstreet together with the students and teachers of the school.                                                                                                                                              | Flanders                          | One report of the measurements campaign                                                                                                                                              |
| Schoolstreet<br>measurements in<br>Roeselare                                                                | Measuring the effects of the schoolstreet together with the students and teachers of the school.                                                                                                                                              | Flanders                          | One report of the measurement campaign                                                                                                                                               |
| demonstrate<br>robustness of<br>technology,<br>recruitment strategies<br>and data streams<br>visualisations | Involving partners from other organisations and discuss already available data and identify gaps to be filled                                                                                                                                 | Sofia, Berlin                     | 2 to 3 deployments                                                                                                                                                                   |
| Actual pilots round 1                                                                                       | following the concept of iteration and constant feedback: working with end-users and volunteers for installing the sensors (especially traffic counting)                                                                                      | Sofia, Berlin,<br>Plovdiv, Athens | <ul> <li>300+ citizens involved in open and public experiments</li> <li>10GB new air quality data collected by citizens</li> <li>Cloud calibration to enhance accuracy of</li> </ul> |



| WHAT                                                                                                                             | HOW                                                                                                                                                                                                                                              | PILOT                             | KPIs                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                  | and providing constant<br>support to them when<br>needed.<br>collection and analysis of<br>data gathered by sensors<br>and app.                                                                                                                  |                                   | citizen science data*                                                                                                                                                                         |
| Actual pilots round 2                                                                                                            | working with end-users and volunteers for installing the sensors (especially traffic counting) and providing constant support to them when needed. collection and analysis of data gathered by sensors and apps Fine Tuning of ethics procedures | Sofia, Berlin,<br>Plovdiv, Athens | <ul> <li>500 users of AR app (personal, neighbourhood)</li> <li>1000 uses of Dashboards (personal, neighbourhood, city)</li> <li>&gt;70% users satisfied with COMPAIR tools*</li> </ul>       |
| Identify pilot locations                                                                                                         | Workshop 1 outcomes + contact with district offices                                                                                                                                                                                              | Berlin                            | <ul> <li>Target 4 city areas not covered by official measurements</li> <li>Target 4 neighbourhoods that have problematic air quality*</li> </ul>                                              |
| Implement training on<br>air quality (technical<br>training (air quality,<br>sensors, data<br>collection, sensor<br>maintenance) | Workshops and video tutorials                                                                                                                                                                                                                    | Berlin                            | <ul> <li>20 people enrolled in<br/>COMPAIR workshops</li> <li>2 researchers to steer<br/>and support each group</li> <li>&gt;70% participants<br/>happy with training<br/>offering</li> </ul> |
| Comprehensive communication campaign                                                                                             | Use of AR app, contact with initiatives (minority, gender, etc.), PR material in different languages                                                                                                                                             | Berlin                            | <ul> <li>100 people participate in COMPAIR data jams</li> <li>100 people participate in COMPAIR games</li> <li>100 people participate in COMPAIR policy ideathons*</li> </ul>                 |
| Comprehensive communication campaign warming up the public                                                                       | by widely spreading<br>messages and call to action<br>to follow up with project<br>activities and use apps<br>(dashboards)                                                                                                                       | Sofia                             | <ul> <li>500 users of AR app (personal, neighbourhood)</li> <li>1000 users of Dashboards (personal, neighbourhood, city)</li> <li>&gt;70% users satisfied with COMPAIR tools*</li> </ul>      |
| Record results and use dynamic exposure dashboard                                                                                |                                                                                                                                                                                                                                                  | All pilots                        |                                                                                                                                                                                               |



| WHAT                                                         | ном                                                                                                                                                                                                                                     | PILOT      | KPIs                                                                                                                                                                                                       |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Involve representatives and people from different SES groups | Gain insight on pilot socio-economic distribution  Set-up communication and engagement strategy in function of low-threshold and inclusivity  Involve experts, initiatives and organisations willing to help engage with low ses groups | All pilots | <ul> <li>1000 citizens targeted in each pilot location</li> <li>participation of vulnerable groups relative to local demographic</li> <li>Varied demographic balances (gender, age, education)*</li> </ul> |
| Evaluate of CS activities                                    | feedback collection through<br>surveys/questionnaires                                                                                                                                                                                   | All pilots | Develop metrics from MICS (Measuring Impact of Citizen Science) project[1]     Align with citizen science indicators from official MORRi list                                                              |

<sup>\*</sup>we will start actively recruiting during the open round with the expectation that the numbers stated will be reached throughout both open and public rounds, as the main goal is to have citizens engaged throughout the whole process

### 2.5. Public Round

The Public Round is an extension of the Open Round with two main differences. First, in the Open Round, we will work mostly with end users of pilot partners, whereas in the Public Round, we open COMPAIR to the wider public. Second, although ideation activities will continue running at this stage too, here we will introduce two new design thinking methods: prototyping and testing. By prototyping we mean contribution to co-innovation activities, such as data jams and policy hackathons (ideathons). Citizen science participants will prototype by using CS data and then COMPAIR tools to extract useful insights. They will contribute to the prototyping during data jams, and to policy by co-creation during ideathons. Businesses will contribute by providing data for hackathons e.g. energy datasets, anonymised phone data. They will sponsor data jams and develop challenges to be addressed during the event (business need). Additionally, they can use our results and tools to define value offering.

Policy makers can also contribute by assisting in communication (especially towards difficult to reach groups), opening some hitherto closed data sets and communicating on their open data sets, by developing challenges based on policy needs, and by endorsing the events and results. The role of researchers is to mentor citizen science participants during the co-innovation sprints. Towards the end of the Public Round all stakeholders will be expected to test the results by incorporating them in their daily routine and/or processes. For individuals it means testing more environmentally friendly behaviours; for businesses - new products and services (including those created at data jams) to help citizens and other organisations reach green targets; for researchers - new methods for conducting citizen



science, engaging participants, performing data visualisation and simulation, and more; for public authorities - new data, new services, new ways of involving people and policies recommended by citizens at ideathons. Each of the four stages is supported by a number of tasks that will be described in detail below (Table 3).

Table 3 - Actions that are planned for the public round per pilot. These are further detailed in section 3 for each pilot.

| WHAT                                                                                    | ном                                                                                                                                                                                                                                                                                                                                                                                                  | PILOT                                         | KPIs                                                                                                                              |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Evaluate the potential of dynamic exposure towards behavioural change and local policy. |                                                                                                                                                                                                                                                                                                                                                                                                      | All pilots                                    | •10 relevant policy measures targeted by the project                                                                              |
| Involve all SES groups                                                                  | By communicating and involving in early stage the organisations that work with minorities and vulnerable groups and people with low SES groups  Using insight gained regarding pilot socio-economic distribution  Set-up communication and engagement strategy in function of low-threshold and inclusivity  Involve experts, initiatives and organisations willing to help engage with these groups | Flanders,<br>Sofia,Plovdiv,<br>Berlin, Athens | participation of vulnerable groups relative to local demographic     Representative demographic balances (gender, age, education) |
| Demonstrate the impact of local measures/policy on AQ and mobility                      |                                                                                                                                                                                                                                                                                                                                                                                                      | Flanders                                      | • 10 relevant policy measures targeted by the project                                                                             |
| Demonstrate data driven approaches to increase citizen engagement                       |                                                                                                                                                                                                                                                                                                                                                                                                      | Flanders                                      | 300+ citizens involved in open and public experiments     10GB new air quality data collected by citizens                         |



| WHAT                                                               | нош                                                                                                                                                                                                                       | PILOT                     | KPIs                                                                                                                                                                                    |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demonstrate data driven approaches for policy formulation          |                                                                                                                                                                                                                           | Flanders                  | <ul> <li>100 people participate in COMPAIR policy ideathons</li> <li>10 relevant policy measures targeted by the project</li> </ul>                                                     |
| Demonstrate the impact of local measures/policy on AQ and mobility | By using the most effective communication tools and messages to spread to citizens; keeping all relevant stakeholders informed and up to date with the project progress and developments thus improving uptake and impact | Sofia, Plovdiv            | Development of 5+<br>visuals that represent<br>the impact certain<br>measures have or could<br>have on air quality that<br>will be spread via<br>different communication<br>channels    |
| Demonstrate data driven approaches to increase citizen engagement  | By using the most effective communication tools and messages to spread to citizens and with the support of local authorities and academia                                                                                 | Sofia, Plovdiv            | Development of 5+ visuals that represent the importance of having citizen science to enhance the available data on air quality that will be spread via different communication channels |
| Demonstrating data driven approaches for policy formulation        | Involving policy makers during the initiation of trajectories to allow for maximal enrichment of public processes and thus ensure better acceptance                                                                       | Sofia                     | 4 Ideathon events focused on policy co-creation                                                                                                                                         |
| Comprehensive communication campaign round 2                       | Widely spreading messages related to the collected data and results from pilot actions, feedback collection through surveys/questionnaires and demographic questionnaires                                                 | Sofia                     | 300+ citizens benefit from COMPAIR training     50 new cities learn about COMPAIR     Min 4 CS case studies presented through storytelling     100 people enrolled in COMPAIR training  |
| Actual pilots round 1                                              | Following the concept of iteration and constant feedback: working with                                                                                                                                                    | Sofia, Berlin,<br>Plovdiv | • 200 + sensors installed                                                                                                                                                               |



| WHAT                                                                                                               | HOW                                                                                                                                                                                                             | PILOT                     | KPIs                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | end-users and volunteers for installing the sensors (especially traffic counting) and providing constant support to them when needed. collection and analysis of data gathered by sensors and apps              |                           |                                                                                                                                                                                                       |
| Actual pilots round 2                                                                                              | Collection and analysis of data gathered by sensors and apps; working with end-users and volunteers for installing the sensors (especially traffic counting) and providing constant support to them when needed | Sofia. Plovdiv,<br>Berlin | 3 Research organisations benefiting from COMPAIR input • 200+ citizens involved in experiments • >5 GB new air quality data collected by citizens                                                     |
| Implement training on air quality ((technical training (air quality, sensors, data collection, sensor maintenance) | Workshops and video tutorials                                                                                                                                                                                   | Berlin                    | <ul> <li>30-50 people enrolled in COMPAIR training</li> <li>2 researchers to steer and support each group</li> <li>&gt;70% participants happy with researcher support</li> <li>2 workshops</li> </ul> |
| Comprehensive communication campaign                                                                               | Use of AR app, contact<br>with initiatives (minority,<br>gender, etc.), PR<br>material in different<br>languages                                                                                                | Berlin                    | <ul> <li>500 users of AR app*</li> <li>(personal, neighbourhood)</li> <li>1000 uses of Dashboards (personal, neighbourhood, city)</li> <li>&gt;70% users satisfied with COMPAIR tools</li> </ul>      |
| Record results and use dynamic exposure dashboard                                                                  | Use of the policy<br>monitoring dashboard to<br>visualise results and<br>assist in the<br>interpretation and<br>analysis of collected<br>data                                                                   | Berlin                    | • > 200 uses of Dashboards (personal, neighbourhood, city)                                                                                                                                            |
| Interpret results, propose policy ideas/measures                                                                   | Ideathons, data jams using PMD, DEVA                                                                                                                                                                            | Berlin                    | <ul> <li>&gt;20 people     participate in COMPAIR     data jams • &gt;20 people     participate in COMPAIR     games</li></ul>                                                                        |



| WHAT                                        | нош                                                                                                                                            | PILOT  | KPIs                                                                                                                                                                                                                 |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                |        | participate in COMPAIR policy ideathons                                                                                                                                                                              |
| Assess behavioural and environmental impact | Feedback collection<br>through<br>surveys/questionnaires                                                                                       | Berlin | 5 pathways to behavioural change elaborated     >70% participants happy with researcher support     >70% participants able to extract actionable intelligence     >70% citizens report positive changes in behaviour |
| Integration with DT                         | Technical integration of COMPAIR technologies with DUET Digital Twin Explore city policies that can be enhanced with new environmental CS data | Athens | 2 policies from the DT                                                                                                                                                                                               |

<sup>\*</sup>Refers to total number of users for all pilots in all rounds

Epics and user stories were used to define user specifications of **COMPAIR** technology. Pilot teams and the stakeholders and citizens involved in the co-creative workshops defined what they wanted to get from **COMPAIR** technologies. This list was then revised and translated into EPICS which serve the purpose of guiding the tech partners in the design and development of the technologies. This list of requirements is shared by all pilots and is not static, it evolves with the project.

Epics are bigger pieces of requirements coming from the pilots. Since epics are very important in our process as they drive all development work, we have given them an identifier. That way, we can refer to them in all deliverables with their identifier and people can find the epic. To make it easier to figure out what software the requirement is about, we have used a string as an identifier and not a number. The first part of the identifier points to the software (Co2 for CO2 dashboard, PMD for Policy Monitoring Dashboard, DyD for Dynamic exposure Dashboard, DEVA for Dynamic Exposure Visualisation App). Epics that are linked to multiple software will have 'All' as the first part. The second part of the identifier is a three letter abbreviation of the functionality that is requested.

Table 4 - EPICS overview

| ID      | EPICS                                                                                                                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AllNf01 | As a citizen, I want to use fast and efficient dashboards, so I can analyse situations well                                                                  |
| AllExp  | As a citizen, I want to be able to export the data from the dashboards in a number of formats, so I can share and work on the data outside the COMPAIR tools |
| AIIL&f  | As a citizen, I want to use pleasing, clear, consistent dashboards, so I can analyse situations well                                                         |



| <b>EPICS</b>                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As a citizen, I want to know the current and historic contribution of my different activities to my Carbon Footprint, so I can maximise the impact of changes to my behaviour |
| As a citizen, I want to get a list of recommendations on how to reduce my contribution to Co2 creation                                                                        |
| As an admin, I want to manage the dashboards I am responsible for, so I can help my users be efficient                                                                        |
| As a citizen, I want to be able to create scenarios of citizen and government actions that show me how emissions can be reduced to a certain target.                          |
| As a citizen, I want to see the output of air quality sensors that were worn on trips, so I can analyse the exposure of people to air pollution                               |
| As a citizen, I can access information about air quality, best practices, from the COMPAIR tools and dashboards                                                               |
| As a researcher, I want to be able to manage experiments done                                                                                                                 |
| As a researcher, I want to be able to share information, so my users know how to use COMPAIR tools efficiently                                                                |
| As a citizen, I can annotate and share information about exposure on my trips                                                                                                 |
| As a citizen, I want to get historical information about trips so I can assess the exposure                                                                                   |
| As a citizen, I want to get realtime information about trips so I can assess the exposure                                                                                     |
| As a citizen, I want to use pleasing, clear, consistent dynamic exposure visualisation app, so I can analyse situations well                                                  |
| As a citizen, I want to interact with the app and simulate how my actions would ead to reduced/increased pollution                                                            |
| As a researcher, I can monitor how the app is being used so I can assess if actions need to be taken                                                                          |
| As a user, I can update my settings in the app, so my characteristics, my sensor, s taken into account                                                                        |
| As a citizen, I want an intuitive and clear visualisation of the data                                                                                                         |
| As a user, I can login to the tools, so my settings and personal info is used                                                                                                 |
| As a citizen, I want to compare the output from different projects using the policy monitoring dashboard against each other                                                   |
| As a citizen, I want to see realtime and historical information about air pollution, so can assess the impact of policy decisions                                             |
| As a citizen, I want to see context data like weather, roadworks, so I can take this context into account when assessing the impact of policy decisions                       |
| As a citizen, I can use a map interface to see the location of sensors so I have an understanding where measurements are done                                                 |
| As a citizen, i want to see realtime and historical information about traffic, So I can assess the impact of policy decisions                                                 |
| As an admin, I can trigger behaviour using the dashboard by using gamification echniques, so I can increase take up of the dashboard                                          |
| As an admin, I can manage dashboards during the lifecycle of projects so people can use the dashboards to assess impact of policy decisions                                   |
| As a user, I get a user friendly, pleasing, intuitive UI, so I know how to use the dashboard and I'm motivated to use it                                                      |
| フェフモフョファファ ファファ ファファ ファファ ファファ ファンコ                                                                                                                                           |



Writing these has been a tremendously useful exercise to enable us to predict and be prepared for engaging a fair representation of society. In addition these requirements are also crucial in informing the technical partners when developing their products. Moving forward, pilots will now further expand on these throughout the project lifetime as a feedback loop. The more people we engage, the more we learn about what is working and what is not.

## 2.6. The **COMPAIR** technology

**COMPAIR** has six user oriented technical enablers that will support the CS Lab activities in the pilots to test replicability. The components can be integrated in different combinations, including into a CS App depending on the experiment and user needs. The elements are:

- (a) Dynamic Exposure Visualisation App (DEVA): In our society SmartPhones are almost ubiquitous, therefore apps can increase the reach and engagement of the project. The idea of this app is to enable people to explore their surroundings via their smartphone or tablet camera, so they see a visual overlay of environmental information, including air quality. Through games, users will be able to "perform tasks" and, for example, see changes in environmental information when they make certain decisions, such as walk rather than drive or provide additional context information). By entertaining and educating at the same time, COMPAIR will be able to convert the interest of many people into joining citizen science experiments. The use of this interface can be integrated with other components e.g., CS Dynamic Exposure Dashboards to display new citizen science findings/data. During the co-creative workshops actual users will be involved in testing and developing ideas for the app.
- (b) Citizen Science Sensors: **COMPAIR**'s sensors are filling the existing gaps in the sensor market (more on this can be found on deliverable **D3.2 Sensor Device Functional and Technical Design Report**). The sensors that will be used in the pilots are:
  - Telraam for traffic measurements;
  - SODAQ for static and dynamic air quality measurements (PM10, PM2.5, NO2).
- (c) CS Dynamic Exposure Visualisation Dashboard: This easy-to-understand visual dashboard will be used to show both city and CS data (with a GIS identifier) on a map and in various charts. Data sources include fixed city sensor data along with CS sensor data, and other citizen captured data e.g., feelings, smells, actions etc. Citizen Scientists, no matter their educational background, will be able to look at and understand their own data, and at anonymised group data, so through simple but powerful visualisations they can better understand air quality information and local context.
- (d) Carbon Footprint Simulation Dashboard: This Dashboard is designed to support specific experiments around carbon footprints or indeed footprint for any chosen air molecule. Algorithms will help users see and compare how future CO2 and other levels will change based upon different individual actions e.g., washing during day or night, driving or cycling, recycling food, plastic, paper, glass etc. The aim is to guide user behaviours towards more environmentally friendly choices like limiting waste and maximising recycling, replacing



polluting stoves and ovens with less energy consuming household appliances, opting for a more environmentally friendly car use (car sharing).

- (e) Policy Monitoring Dashboard: This Dashboard helps users to understand and compare how environmental situations change under different actions. By collecting a large amount of CS information in a particular setting, the Dashboard will be able to simulate future impacts for different variables e.g., time of road closures, differing routes to school, staggered start times for work or schooling.
- (f) Digital Twin Dashboard: For cities with a Digital Twin (Flanders and Athens), citizen generated ideas for new policies will be able to be simulated and reviewed in a systematic manner against other policies. The dashboard is targeted primarily towards policy makers but open to citizens, academics and businesses.

**Table 5 - Technical enablers supporting CS activities which will be used per pilot.** When it is planned it is marked with an 'x'.

| Technical enabler                              | Athens | Berlin | Flanders | Sofia | Plovdiv |
|------------------------------------------------|--------|--------|----------|-------|---------|
| DEVA                                           | х      | х      | TBD*     | х     | х       |
| Telraam traffic sensors                        |        | x      | x        | х     | х       |
| SODAQ static sensors                           | x      | x      | x        | х     | х       |
| SODAQ<br>wearable sensors                      |        | x      | X        | x     | х       |
| CS Dynamic Exposure<br>Visualisation Dashboard | х      | x      | X        | x     | х       |
| Carbon Footprint<br>Simulation Dashboard       | х      |        | TBD**    | х     | х       |
| Policy Monitoring<br>Dashboard                 | х      | x      | x        | Х     | х       |

<sup>\*</sup>To be decided once the app is further developed.

# Inclusion of Lower Socio-Economic Status Groups

COMPAIR was designed to bolster citizens' capacity to monitor, understand, and change their environmental impact, both at a behavioural and policy level, as well as at individual and city levels. It unlocks the power of the wider public, including people from lower-socio economic groups to increase understanding of thematic issues, to provide broad granular

<sup>\*\*</sup> Flemish cities are part of the 100 cities participating in EU Mission for climate neutral and smart cities by 2030



data around the central theme of air quality, complementing and improving the quality of official datasets and making new information useful for helping to meet environmental goals.

Successfully including vulnerable communities such as lower SES is one of the greatest challenges citizen science projects have to overcome, however it is paramount that we do so. They often fall under the label 'hard to reach' as more often than not they are under represented in many initiatives, such as citizen science projects, where decisions that could impact their day to day lives are discussed.

As an important step to achieve the representation of vulnerable groups we conducted a mapping exercise at the last plenary meeting to gather ideas of how each of the pilots were pursuing towards this goal:

- Involve third party organisations/charities already embedded within vulnerable communities:
- Consult group and participation experts that can advise on how to lower thresholds and increase involvement;
- Target communities where you expect vulnerable groups based on socio-economic maps
- Work through/with intermediaries or influencers and community leaders;
- Produce learning graphical material;
- Identify best locations and prioritise schools based on local demographic distribution;
- Involve academia as ambassadors of trusted data (verification);
- Reward recognition certificate for participation;
- AR app suitable for primary school kids;
- Increase teaching of STEM topics in schools;
- Engage elderly communities.
- Define specific vulnerable gourps for each pilot;
- Co-create and test a diverse offering addressing different availabilities, skill sets and motivators;
- Organise activities close to the groups you wish to engage with;
- Take into account the perceived barriers and motivators when creating engagement opportunities;
- Create a range of types of engagement;
- Ensure feedback loops to participants and larger community communicating how input was used and what the outcome was;

Based on this action list we have developed several thinking points and recommendations each of the pilots are encouraged to follow:

1) Each pilot should develop their own definition of lower SES groups based on policy in their area. Often the terms lower SES, vulnerable and hard to reach are used interchangeably but there are many examples when these do not overlap. For instance older communities might be vulnerable (in particular to poor air quality) and not be lower SES. Or a single mum might be a teacher and thus not hard to reach but be both vulnerable and lower SES. Thus, in order to move forward it is paramount that each pilot has a clear definition of who exactly they will work towards engaging and what indicators they will use.



- 2) The inclusion of charities and/or organisations with experience in working with the identified groups is a simple and yet effective way to both reach and communicate and raise awareness about the project. We highly encourage all pilot partners to do another mapping focussed on these institutions in order to consult with them.
- 3) Simultaneously, it might be important to think beforehand on what are the messages we want to deliver to these groups that focus on the benefits for them in taking part in COMPAIR. For this we will need to spend some time mapping the different motivations that these communities might have to participate and work on them.
- 4) Making content accessible. From recruiting campaigns, to training sessions, to all **COMPAIR** products.

Finally as a consortium in order to support our efforts of engaging lower SES groups we propose some internal additional actions:

- Internal training on unconscious bias (propose timeline M13);
- Internal training on ethical engagement strategies of vulnerable groups such as lower SES groups (Before the start of the public round);
- Workshop with all the pilot partners to co-define lower SES and further stakeholder mapping and engagement strategies (propose timeline - M14, in person combined with review meeting);
- The establishment of an internal diversity and inclusion committee to contribute with gathering relevant information, reviewing inclusion statements on all consortium communications and supporting the organisation of the above mentioned actions (M12);
- Selected consortium members should attend a training focusing on societal impact assessment, so that we can learn from the outcomes of this project and continue working on inclusion in future projects.
- Determine a few approach experiments specifically conceived to reach lower SES groups;



## 4. Pilots Operational Plans

The central theme for all COMPAIR experiments is the impact on air quality. This impact can be direct (impacting behavioural change) or can be indirect via awareness-raising (showing the local air quality exposure). Both complementary approaches can be collective (for example, an AR application (DEVA) showing the current air quality or a model simulation of the air quality impact of a new city development) or can be personal oriented by measuring your personal air pollution exposure or calculating the effect of personal behavioural change (Fig 3). These approaches complement each other and pilots have been designed to cover both squares of the quadrant, so evaluation can determine which type of CS activities have the most success.

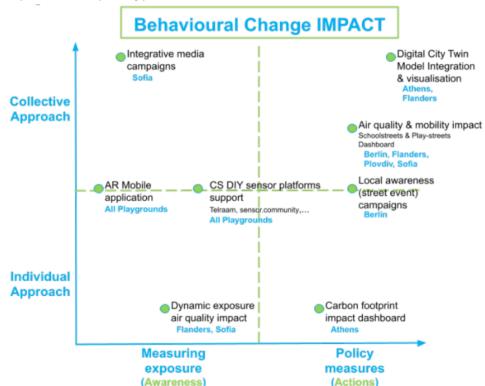



Figure 3 - Spread of CS pilot types for assessment on best environment for success

Figure 3 is a simplified representation of the different pilot initiatives and what approaches they are using. The intention here is not to showcase the differences each strategy has on impact but to showcase the spread of strategies **COMPAIR** is using.

This section provides more in depth information regarding the operation plan for each pilot. We go through milestones already reached, some challenges and recommendations that are pilot specific. There are however milestones and challenges shared by all pilots.

#### **Shared Milestones:**

• All pilots successfully mapped relevant stakeholders to be invited to each pilot's co-creative workshops (section 2.2 on groundwork).



• Every city ran 2 co-creative workshops. This milestone was very important in the designing of future pilot activities. Two co-creative workshops were successfully organised in a span of five months. The goal of the first workshop was, on the one hand, to contextualise COMPAIR in light of each city's air pollution situation and its planned air quality measures and, on the other, to present the project and its ambitions to the participants as a solution to the city's air quality issues.

#### Shared Challenges & Recommendations:

Table 6 - Challenges and corresponding recommendation for all pilots

| Challenges                                                         | Recommendations                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defining lower SES groups.                                         | Each city has a different demographic landscape. Lower SES are often referred to as vulnerable or hard to reach - these terms should be disentangled and carefully expanded upon in each pilot. Pilot partners should receive some training on this topic before working on this very important challenge.                                                                                                   |
| Language and literacy skills                                       | Accessible, easy to follow, intuitive and inclusive content.                                                                                                                                                                                                                                                                                                                                                 |
| Level of digital literacy                                          | This is a shared challenge present in all communities. We need to take this variety in digital skills into account. We design the technologies in an inclusive, accessible, clear, intuitive manner so that it is easy to use for everyone. It is more important to be inclusive than to have the most advanced app. For certain groups we prepare extra support in first usage or allow the use of devices. |
| Encourage/convince citizen science participants to use technology. | All pilots should conduct several training initiatives in a variety of settings and formats in order to empower everyone to share their concerns and doubts freely and actively engage in the project. Openly incorporating feedback from end users and ensuring the input is perceived as useful will be crucial here.                                                                                      |
| Pilot operation plan evaluation and monitoring.                    | All pilots should do their best to increase cross communication amongst other project pilots. We already do this as part of our pilot                                                                                                                                                                                                                                                                        |



calls, now let's strengthen our efforts in communicating also our challenges and shortcomings so as to enable co-creation of solutions and prevent pilots from making the same mistakes (more on this in section 4.5).

Pilot partners and technical partners should also strengthen their communication. As we learn more about our users and what they want/need the better we will know what is needed for our sensors and apps. Technical partners should be flexible and open to these requests.

Defining a plan for how the outputs of the project will be monitored and evaluated during the open and public rounds starting from small, dedicated user-groups to public testing.

This strategy should include a way to determine whether our environmental monitoring capacity has improved, whether we managed to involve and reach our target whether citizen science groups and effectively participants changed their behaviour to lower their environmental impact. Some of the KPIs are currently being assessed at project level, others at pilot level or at both levels and will be presented as part of deliverable 6.1 - Impact Evaluation planning to be released in October 2022.

Having a methodology that is actively inclusive (not only regarding lower SES participants).

Project results, communication campaigns, and any citizen engagement strategy need to be communicated in an open and accessible manner across all stakeholders and citizens. This means taking care in the language used, like avoid jargon, and also making sure we are communicating in inclusive ways in our choice of colours, using ALT text whenever possible (eg. Twitter and Linkedin), provide subtitles with captions for deaf and hard of hearing whenever possible, etc.. It is important to maintain an inclusive mindset during all phases of the pilot operations.

Again consortium partners should participate in trainings tailored at developing inclusive mindsets.



Active and long lasting participation of policy makers.

Policy makers are a stakeholder particularly hard to engage. Thus several actions should be taken in order to increase their interest and availability to participate and support longer term:

- Nurture and broaden existing contacts with local policy makers
- Make sure to contact the relevant actors, experts and responsible people within the city administration (thematic, focus groups, data sciences and participation
- Reach out and discuss how to embed the engagement so it is useful for the issues they are working on and behaviour changes they would like to deliver on
- Nurture these contacts by keeping them informed and engaged throughout the project
- Gain a good understanding of their viewpoint and what they find beneficial
- Create interesting communication moments throughout the project where they can show their support and thank participants
- Allow them to also give feedback on what they will do with the results on regular basis
- Make it clear which parts of the project can't happen without their input
- Asking for their constant feedback on pilot projects' implementation to avoid risks
- Seeking advice on actions that need their approval and acceptance
- Allow them to also receive feedback from the participants
- Offer them possibilities to help promote the initiatives
- Engage with them to develop ways of sustaining and further developing the results
- Discuss the value of citizen science and how they can get the most out of it in the future



 Work out a plan with them to sustain the citizen science collaboration

The information contained in the next 4 sections was collected as part of an in person workshop at the Projects plenary meeting in Samos. The information was then expanded together with those contributing to the deliverable.

#### 4.1. Berlin

Berlin is the capital of Germany, as of 2019 has a population of >3.6 million people and over 6 million in the metropolitan area. One-third of the city's area is composed of green areas and water bodies (Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin, Referat Freiraumplanung und Stadtgrün, 2021). The population of Berlin is highly diverse, with >700,000 foreign residents and >500,000 German citizens with migration background (Amt für Statistik, 2020)

The Berlin COMPAIR pilots will focus on citizen engagement to bring citizens together to increase neighbourhoods' liveability and create a resilient and climate-friendly environment. This will be done through a combination of liveable spaces with evidence-based data delivered by citizens and local communities (open data). Berlin/Brandenburg is already one of the regions with the highest number of DIY air quality sensors installed. Using these sensors and networks for evidence-based policymaking combined with other city datasets will lead to smarter cities and smarter citizens.

The first pilot case is about creating more liveable city environments awareness-raising campaigns in Berlin neighbourhoods by extending existing proven formats like "<u>Tag des guten Lebens</u>', and <u>KiezConnect</u>. A second pilot will focus on the effects of local car traffic-free zones, taking advantage of already established "<u>Temporäre Spielstraßen</u>" (temporary play streets).

The mapping exercise conducted as part of D2.2 found that the vast majority of German initiatives are actually initiated, funded and managed by domestic actors together with a few examples of CS data impacting policy and regulations. This demonstrates the existence of good local support for CS initiatives and thus we encourage the further contact of relevant initiatives mapped. The mapping of existing relevant policies conducted in D2.3 shows the existence of several initiatives related to urban planning and transportation in Berlin as part of the official political agenda and included in its development participation of residents. Though not directly related to air quality, all of this is evidence of good collaboration between policymakers, scientists and citizens, however the latter could have been more involved in data collection activities. This sets the perfect opportunity for COMPAIR as we can rely on this good relationship amongst different actors whilst also working towards overcoming existing shortcomings.



#### 4.1.1. Milestones

#### Milestones reached:

- Two co-creative workshops that happened in February and June 2022.
  - The outcome of the first workshop was a collection of ideas for the development of COMPAIR's sensor and visualisation tools. Participants also shared their views on suitable locations and target groups for the two pilot projects.
  - The second workshop was narrower in scope and focused on receiving feedback and inputs on the Policy Monitoring Dashboard and the Dynamic Exposure Visualisation App mockups.
- Building a community of stakeholders
  - From the very onset of the project, first contacts were established with different interest groups in order to start building a community around air quality, sustainable neighbourhoods and social inclusivity. The stakeholders were initially identified as part of D2.1 Value Network Canvas but are, apart from the aforementioned workshops, being regularly engaged via bilateral exchanges in order to make them a part of a steadily growing COMPAIR community. Stakeholders include various neighbourhood, sustainability and social justice initiatives, researchers as well as municipal district offices (Fig 4).

Government
Academia
Business
Society/Citizens

High Interest
High Interest

Figure 4 - Berlin pilot stakeholder network



The size of the bubble of each stakeholder is determined by their level of power, as provided by the pilots, each section a different interest level and each colour represents a different Quadruple Helix group. (adapted from D2.1 - original can be seen <a href="here">here</a>).

Table 7 - Planned milestones of Berlin pilot activities at each pilot stage

| Table 7 - Fidilited filliestories of Bernin                                                                                                                                                                                                                                                                                                                                                       |                          |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|
| Closed round                                                                                                                                                                                                                                                                                                                                                                                      | Expected timeline        | COMPAIR products |
| 3 Telraam site tests at different locations and during different time periods. Traffic data is collected and analysed                                                                                                                                                                                                                                                                             | August - September 2022  | Telraam          |
| Sodaq Air and Sodaq NO2 site tests at different locations. Air quality data is collected and analysed                                                                                                                                                                                                                                                                                             | September 2022           | Sodaq Air & NO2  |
| Exchange with Telraam and Sodaq: training, calibration, fine-tuning and general support                                                                                                                                                                                                                                                                                                           | September - October 2022 | NA               |
| Report and presentation of results: the collected data, handling of the sensor installation and calibration process and general experiences are documented in a report. This will serve as the main input for D5.1 Identification of stakeholders: a narrowed down Stakeholder list is created based on D2.1, including actors from different initiatives, researchers and municipal policymakers | October 2022             | NA               |
| Open round                                                                                                                                                                                                                                                                                                                                                                                        | Expected timeline        | COMPAIR products |
| Draft of experimental design and KPIs: a first draft of the experimental setup will be created, which will include aspects such as sensor locations and distance, data collection and KPIs based on D6.1                                                                                                                                                                                          | November 2022            | NA               |
| Draft of final experimental design: a final draft of the experimental setup is created based on experiences from the first experimental design                                                                                                                                                                                                                                                    | January - February 2023  | NA               |
| Involvement of stakeholders from different backgrounds (political, lower SES, researchers, etc.)                                                                                                                                                                                                                                                                                                  | April - May 2023         | NA               |



| Training of involved groups: air quality, traffic, sensor use and calibration, data interpretation                                                                                                                                                                                                                                                     | June 2023                              | Sensor.community,<br>bcmeter, Telraam, Policy<br>Monitoring Dashboard and<br>Dynamic Exposure<br>Visualisation App            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Conduct preliminary survey based on D6.1                                                                                                                                                                                                                                                                                                               | June 2023                              | NA                                                                                                                            |
| Deployment and placement of sensors based on final experimental design: field tests of experiments with involved stakeholders, gathering of experiences  • Deployment at two potential play streets  • Deployment at one dynamic measurement campaign                                                                                                  | June - October 2023                    | Sensor.community, Sodaq<br>Air, bcmeter, Telraam,<br>Policy Monitoring<br>Dashboard and Dynamic<br>Exposure Visualisation App |
| Conduct final survey based on D6.1                                                                                                                                                                                                                                                                                                                     | October - November 2023                | NA                                                                                                                            |
| Assessing performance based on quantitative and qualitative KPIs from D6.1                                                                                                                                                                                                                                                                             | November 2023 -<br>December 2023       | NA                                                                                                                            |
| Public round                                                                                                                                                                                                                                                                                                                                           | Expected timeline                      | COMPAIR products                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                                                                               |
| Establishing contact with district offices to receive permits to close down streets for traffic in selected areas as well as with Berlin Partner for Business and Technology to receive permits to post air quality sensors on public property                                                                                                         | December 2023                          | NA                                                                                                                            |
| offices to receive permits to close<br>down streets for traffic in selected<br>areas as well as with Berlin Partner for<br>Business and Technology to receive<br>permits to post air quality sensors on                                                                                                                                                |                                        |                                                                                                                               |
| offices to receive permits to close down streets for traffic in selected areas as well as with Berlin Partner for Business and Technology to receive permits to post air quality sensors on public property  Further involvement of stakeholders from different backgrounds (political, lower SES, researchers, etc.) via targeted engagement campaign | December 2023  October 2023 - February | NA                                                                                                                            |



| Measurement of data: car-free streets and dynamic measurement                       | February - July 2024    | Sodaq Air,<br>sensor.community, bcmeter,<br>Telraam                |
|-------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|
| Application of the final version of the PMD and DEVA in citizen science experiments | March - June 2024       | Policy Monitoring Dashboard and Dynamic Exposure Visualisation App |
| Conduct final survey based on D6.1                                                  | May - July 2024         | NA                                                                 |
| Assessing performance based on quantitative and qualitative KPIs from D6.1          | July - September 2024   | NA                                                                 |
| Further identification and contact of stakeholders from the business sector         | August - September 2024 | NA                                                                 |

## 4.1.2. Challenges & Recommendations

Table 8 - Challenges and corresponding recommendations for the Berlin pilot

| Challenges                                                                                                                                                                                                                                                               | Recommendations                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limited time span for play streets: depending on the selected area's local traffic situation, it may prove difficult to close down a street for a longer time period, which could greatly impact the validity of the results gathered during the car-free streets pilot. | Valid play streets should be identified based on project requirements. This will primarily include examining past temporary play streets (their successes and challenges), specifically in district management areas (germ. Quartiersmanagement) that promote neighbourhood inclusion.  In order to measure the impact of street closures for as long as possible, sensors |
|                                                                                                                                                                                                                                                                          | may be deployed at established and returning events (e.g. Karneval der Kulturen, Autofreie Sonntage Schloßstraße) where roads are closed down for traffic.                                                                                                                                                                                                                 |
| Administrative time delay: in order to close down a street, the local district office needs to issue a permit to the applicant. This process may take time and delay the car-free streets pilot.                                                                         | If feasible, district offices could be contacted earlier so as to counteract the potential administrative time delay associated with permit issuance for car-free streets:  If possible include those administrative members who might help reduce delays as part of the stakeholder network. Foster a                                                                     |
|                                                                                                                                                                                                                                                                          | sense of agency and get them invested in the project's cause.                                                                                                                                                                                                                                                                                                              |



Establish a robust stakeholder network: building a community from ground up is a difficult process that requires continuous engagement of key stakeholders. Many communities with similar goals are fragmented, so the challenge will lie in rallying the different interest groups behind common goals related just and sustainable neighbourhoods.

Joining forces with CS initiatives mapped in D2.2 to achieve common goals is always a good idea. This also has the potential to help find more stakeholders who are already committed to taking part in projects such as this.

Connect the project to the German CS network <u>Bürger schaffen Wissen</u>. The platform offers various services related to Citizen Science, such as the organisation of the CS Forum and other events, communication through different social media formats, and advice and support for CS projects to strengthen citizen research sustainably.

Access to lower SES communities who are more exposed to air pollution will be challenging due to language barriers, different priorities and potential distrust.

The following groups (potentially identified as from lower SES) should be targeted: students with children (as a group receiving government assistance), members of neighbourhood initiatives (as a group likely to be adversely affected by sustainability issues), residents living close to traffic-heavy areas (likely to be adversely affected by noise and traffic issues).

Furthermore, in order to successfully engage lower SES groups we recommend the further engagement with schools and/or school associations and of local community members who could both translate and help bridge other communication barriers.

Time availability of engaged citizen science participants.

Develop a methodology such that you can expert participants to have a range of interests/time available. If this is expected already at the design level it does not have to be seen as a problem but as a feature.

Nevertheless work towards fine tuning your map of interests and motivation to increase as much as possible participation.

Be mindful and respectful of the participant's time. Provide information in a



pilot

easily accessible way that is streamlined. And accept that people will participate on their own terms, decide in advance what is acceptable and what is not. Training and interpretation of data: in order A training session organised by technical partners will instruct the pilots on the proper to train participants, the pilot lead will need to understand the main aspects of the installation, usage and maintenance of sensors (installation, calibration, etc.). sensors. Given

the pilot lead's non-expert background, some issues may not be Maintain open communication with the solved immediately and will require the technical team throughout the assistance of the project's expert partners. operation phases.

#### 4.2. **Flanders**

Flanders is one of the three Belgian regions and with 6 million inhabitants it is the most populated region in Belgium. 9% of households in Flanders are at risk of poverty. Those born outside the EU and those unemployed are at higher risk of this (Population below the poverty threshold, statistics Vlanders). In Belgium, foreign-born residents make up less than one-tenth of the population, including EU-born migrants and people from North and Central Africa, the Middle East, and Southwest Asia (Ethnic groups and languages, Britannica)

In Flanders three **COMPAIR** pilots are planned:

The first Flanders pilot aims to assess the effect of school streets (streets that are blocked for cars around a school during the moments that children go to or leave the school). Results will be shared amongst policy makers in the city, schools and parents. This pilot case will help vulnerable road users around schools and aims to be an excellent showcase of how Citizen Science sensors can be clustered and combined for policymaking on a local level.

The second case will take an exposure assessment of air pollution from a static to a dynamic level, i.e., taking the behaviour of citizen science participants into account rather than just their home address (dynamic exposure). The goals are: (1) improving existing air quality models and their ability to estimate population exposure (better monitoring) & (2) engaging citizens in a behavioural change process targeted at reducing their exposure and reducing their emissions.

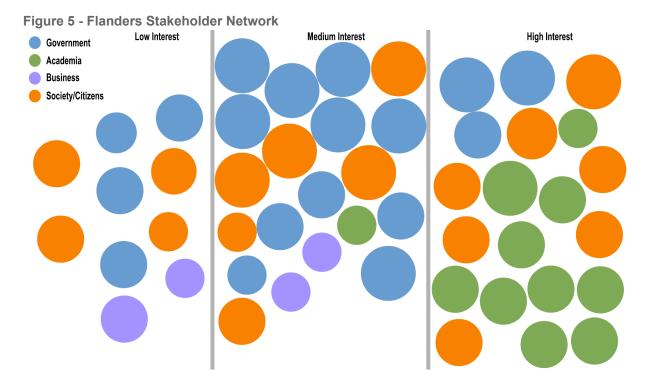
The third Flanders pilot case will integrate air quality and traffic CS data into the Flanders Digital City Twin as a proof of concept by pinpointing the measurement stations on a 3D map and by combining the CS IoT data streams with air quality and traffic models to test the impact of CS IoT data on the models on a neighbourhood, city, and regional level. The results will be analysed by experts in multiple policy domains such as environment, mobility, and spatial planning. Then results will be evaluated to the added value for



evidence-based multi-policy domain policies on different geographical levels neighbourhood city, region, and decision levels as operational to strategic long-term decision making.

Once more, the mapping of CS initiatives conducted as part of D2.2 found great support for establishing both local and international citizen science projects with a lot of information of how impact was measured and how communication across different policy and decision makers was established. This is further demonstrated by looking at the number of times CS is mentioned in policy related documents. One of the most important documents is the <u>Citizen science roadmap for local government</u> that outlines what citizen science can mean for local government, explains how to get started, and identifies success factors. All of this combined, shows a perfect ground for <u>COMPAIR</u> with plenty of opportunities to break further barriers and move both CS and air quality related measures forward.

#### 4.2.1. Milestones


#### Milestones reached

- Benchmark: VMM organises a benchmark study of commercially available (mobile) air quality sensors for black carbon (BC), particulate matter (PM) and nitrogen dioxide (NO2). Through this study we try to find out how well the sensors perform under lab conditions and in the field. In this way we can frame the performance of COMPAIR devices in light of available technologies and determine the suitability of both COMPAIR and other devices for the next phases of the project in which we will conduct mobile air quality measurements with citizens.
  - Sensor selection for benchmark study: from a list of commercially available AQ sensors, a selection was made of sensors that we wanted to include in the study, taking into account the presence of an internal GPS functionality, the portability, cost price, delivery time, etc.
  - Start of the lab tests:
    - For the NO2 sensors, following tests are performed: Lack of fit test, effect of relative humidity, effect of temperature, interference with O3, response time
    - For the BC & PM sensors, a linearity test is performed
- 2 Co-creative workshops that happened on February and June 2022:
  - The first workshop took place in February and explained the project to potential stakeholders and questioned their expectations regarding the project.
  - In the second workshop that took place in June, the mockups of the COMPAIR tools were presented to and commented on by the participants.
     We also questioned them about several practical aspects we have to take into account in order to make the experiments with citizens a success later on in the project.
    - How to recruit participants? (in general & specifically lower SES groups)
    - How to motivate them?
    - What are the desired characteristics of AQ sensor devices?
    - Privacy aspects

We also discussed the possibilities for collaboration.



- Building a community of stakeholders (Fig 5):
  - For the workshops, representatives of the triple helix structure were consulted;
    - local governments
      - Ghent, Leuven, Roeselare, Mechelen, Leiedal
      - Province of Antwerp, Agency for Innovation & Entrepreneurship, Department of Education and Training, Agency for Domestic Governance, Department of Environment, SOLVA
    - citizens/society
      - Movement.net, Environment movement (Milieufront)
    - knowledge institutions
      - Flemish Foundation for Traffic Science, Provincial centre for Environmental Research, Knowledge centre for Citizen Science in Flanders (Scivil)
- During the workshop, the project was presented to the stakeholders (Fig 5), mutual
  expectations were harmonised. The products developed within the project were
  presented and feedback collected, it was also a moment to share results. In addition,
  the workshops resulted in a collaboration with Ghent (introduction of a school street
  in Ghent + measurements of the effect of the circulation plan).



The size of the bubble of each stakeholder is determined by their level of power, as provided by the pilots, each section a different interest level and each colour represents a different Quadruple Helix group. (adapted from D2.1 - original can be seen <a href="here">here</a>)



Table 9 - Planned milestones of Flanders pilot activities at each pilot stage

| Closed round                                                                                                              | Expected Timeline                 | COMPAIR product                |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|--|
| Benchmark: lab tests finished                                                                                             | August 31st 2022                  | SODAQ NO2                      |  |
| Benchmark: field tests finished                                                                                           | November 30th 2022                | SODAQ NO2                      |  |
| Draft of experimental design                                                                                              | November 2022                     | NA                             |  |
| Benchmark: report of final results                                                                                        | Mid-december 2022                 | COMPAIR website                |  |
| Open round                                                                                                                | Expected Timeline                 | COMPAIR product                |  |
| Political agreement and support towards school street on their territory and agree to take care of the practical matters. | September 2022                    | NA                             |  |
| Benchmarking of the sensors                                                                                               | March 2023                        | NO2 sensor boxes & BC sensor   |  |
| Deployed a school street (Herzele)                                                                                        | Following Easter holidays 2023    | Herzele (NO2 sensor & Telraam) |  |
| Deployeddynamic measurement campaign                                                                                      | October 2023                      | SODAQ Air (&<br>BC-sensor?)    |  |
| Involved at least 1 school with students of lower SES                                                                     | October 2023                      | Ghent                          |  |
| Public round                                                                                                              | Expected Timeline                 | COMPAIR product                |  |
| Sensor deployment in at least 1 additional schools                                                                        | March 2024                        | NO2, BC and Telraam            |  |
| Deployed at least 1 school streets                                                                                        | Following Easter holidays<br>2024 | NA                             |  |
| Involved at least 1 schools with students of lower SES                                                                    | June 2024                         | NA                             |  |
| Deployed at least 1 dynamic measurement campaigns                                                                         | October 2024                      | SODAQ NO2 & Air                |  |
| Demonstrating results and initiating discussion with businesses through platforms like "Smart Region Flanders"            | October 2024                      | Policy dashboard               |  |



# 4.2.2. Challenges & Recommendations

Table 10 - Challenges and corresponding recommendations for the Flanders pilot

| Challenges                                                                                                                                                                                                                                                                                                                                                                                    | Recommendations                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Time availability of engaged schools.                                                                                                                                                                                                                                                                                                                                                         | Include school, supporting organisations and/or teacher associations as part of your stakeholder group to provide support (and share the burden) in empowering schools to take part.                                                                                                                                                                                                                        |
| Draw up a good survey to assess whether the KPIs are reached.                                                                                                                                                                                                                                                                                                                                 | Short surveys, questions sub-sampled of the participants, not too frequent.                                                                                                                                                                                                                                                                                                                                 |
| Optimise sensor calibration.                                                                                                                                                                                                                                                                                                                                                                  | Maintain close contact with the technical team, perhaps even by creating a system where feedback from cs participants and stakeholders is provided, dealt with and updated throughout the project.                                                                                                                                                                                                          |
| Data interpretation.                                                                                                                                                                                                                                                                                                                                                                          | Organise a workshop for the participants about the use of the dashboards, the final interpretation together with COMPAIR partners or only by the COMPAIR partners.                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                               | Invite scientists to take part.                                                                                                                                                                                                                                                                                                                                                                             |
| Staff time for non technical follow up  Coordination: Timing + parallelisation: Defining the timings on when we will roll out which school street. Can we do more than one school street at a time, or do we need to do this consecutively? This mainly depends on the availability and need of the sensors  Recruiting sensor hosts, schools, citizen, etc (taking into account GDPR-issues) | With such a strong baseline of citizen science activities and such strong evidence of successful engagement of policy makers it might be a good idea to reach out to citizen science practitioners to learn from their experience, perhaps also by including them on your stakeholder network. This can help with easing many challenges such as GDPR related issues and sensor deployment (timing) issues. |
| Sensors have to stay up and running, without bugs (as this is time consuming).                                                                                                                                                                                                                                                                                                                | Involve CS participants also in the trouble shooting related challenges, so that if and                                                                                                                                                                                                                                                                                                                     |



|                                                                                                                                                      | when they do arise it is not seen as a nuisance necessarily but as a learning opportunity. |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Involvement of participants from lower SES as they are harder to reach (e.g. due to a language barrier) and yet often more exposed to air pollution. |                                                                                            |

### 4.3. Sofia and Ploydiv

Sofia is the capital of Bulgaria with over 1.2 million people. 87.9% are recorded as ethnic Bulgarians, with Romani, and Turks being the biggest minorities (1.5% and 0.5% respectively). Sofia is located at the Sofia Valley, which limits the flow of air masses, increasing the chances of air pollution by particulate matter and nitrogen oxide. Plovdiv is the second largest city in Bulgaria with a population of 346 893 people.

The **COMPAIR** pilots in Bulgaria aim to enhance citizen science to cope with environmental problems related to commuting behaviour, sustainable mobility for students and choice of transport in general. Integrating government, private sector and citizen science data with impactful (personalised) awareness. Three pilot cases are planned in Bulgaria:

The first pilot is about creating a mobile dashboard accessible to telecom subscribers and subscribers of the official communication channel of Sofia Municipality, where users can share anonymised information about their usual way of daily commuting. Participating volunteers will be equipped with personal air quality sensors (for a period) and automatically upload them to a shared platform with their consent. The volunteer sensor information will be combined with data from public transport (cards & tickets), scooter operators, bike, and e-car-sharing providers.

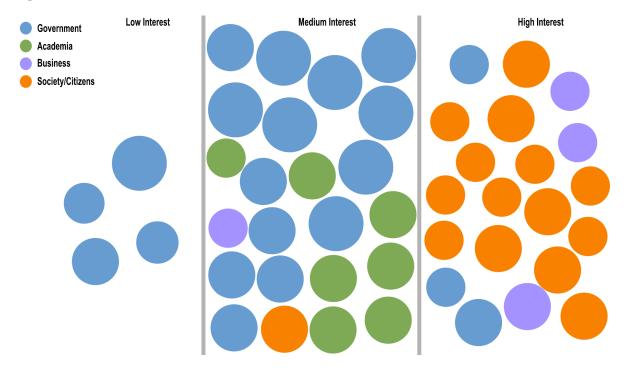
A second pilot will measure air quality around schools to create environmental awareness amongst children and their families. Air quality sensors and GPS sensors hooked on school students' backpacks using different transport modes (car, public transport, walking, bike) will be used to measure dynamic exposure. Flanders and Sofia/Plovdiv will test replicability and roll-out as a highly innovative and low-cost concept in Europe with a real impact on policy making.

A third pilot case will focus on an integrative, comprehensive information campaign "We are the drivers of the city" focussing on positive examples of people using sustainable means of transportation for a daily commute and more sustainable living in general. The campaign will be supported by a gamification app rewarding sustainable behaviour.

Both D2.2 and D2.3 show a recent increase in citizen science initiatives in Bulgaria and an eagerness to invest more in setting up more initiatives. So once more **COMPAIR** 



arrives at a perfect time to highlight the power of participatory research and further infiltrate the policy making world.


#### 4.3.1. Milestones

#### Milestones reached

- Feedback on mockups gathered both pilot teams of Sofia and Plovdiv gathered extensive feedback on the mockups of COMPAIR dashboards and DEVA app.
- 2 workshops took place in the first 8 months of the project two workshops for each location were organised in January and June 2022. During the first workshop in the beginning of 2022 the identified stakeholders (Fig 6) were invited to get acquainted with the COMPAIR project and provide initial feedback on how they can get involved. The second workshop that took place in June was dedicated to gathering feedback and suggestions for improvement on the mockups that were prepared from the COMPAIR Technical Team to showcase the software that will be supporting the data gathering and its visualisation for the project.
- Survey on lower SES groups EAP conducted a survey with 11 responses from NGOs, municipality representatives, academia and businesses. Despite being limited in the number of responses, the survey shows that a good way to reach lower SES groups is through Agencies for Social Assistance, municipal department "Social Policy" and different NGOs. Furthermore, opportunities for learning and gaining new skills and knowledge was the main reason identified as a motivator for these groups to join.
- Stakeholders identified during the work for D2.1 Value Network Canvas stakeholders were identified and work has started in terms of engaging them and turning them into missionaries for the COMPAIR project.
- Awareness Raising on the local news Bulgarian partners published information about the project on their websites. Also the information about the project, workshops and futured activities were published in local newspapers and other on-line media. The EAP presented the project during the annual meeting of Bulgarian Energy Agencies in Burgas, Bulgaria, on 18/07/2022.



Figure 6 - Sofia/Plovdiv Stakeholder Network



The size of the bubble of each stakeholder is determined by their level of power, as provided by the pilots, each section a different interest level and each colour represents a different Quadruple Helix group. (adapted from D2.1 - original can be seen <a href="here">here</a>)

Table 11 - Planned milestones of Bulgaria pilot activities at each pilot stage

| Closed round                                                                                                               | Expected timeline           | COMPAIR products                                                |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|--|
| Sensors' training for internal staff is performed. Staff is acquainted with the devices and can use them appropriately     | September 2022              | TELRAAM sensors for traffic count and SODAQ Air and NO2 sensors |  |
| Pilot actions locations (sensors' preliminary locations) are identified and agreed upon                                    | September - October<br>2022 | N/A                                                             |  |
| Sodaq Air and Sodaq NO2 sensors site tests at different locations. Air quality data is collected and analysed              | September - October<br>2022 | SODAQ Air and Sodaq<br>NO2 sensors                              |  |
| Telraam sensor site tests at different locations and during different time periods. Traffic data is collected and analysed | September - October<br>2022 | TELRAAM sensors for traffic count and SODAQ Air and NO2 sensors |  |
| Re-evaluation of the pilot actions' locations is performed based on the gathered results from the sensors' testing         | October - December<br>2022  | N/A                                                             |  |
| Open round                                                                                                                 | Expected timeline           | COMPAIR product                                                 |  |



| Draft of experimental design and KPIs: a first draft of the experimental setup will be created, which will include aspects such as sensor locations and distance, data collection and KPIs based on D6.1                                                              | January - March 2023           | N/A                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| An active campaign for gathering volunteers is undergoing                                                                                                                                                                                                             | March - May 2023               | COMPAIR website                                                                                                |  |
| Application and test of the first version of the PMD, CO2 dashboard and DEVA in an experimental setting                                                                                                                                                               | April - May 2023               | PMD, CO2 dashboard and DEVA                                                                                    |  |
| Training of involved groups / volunteers: air quality, traffic, sensor use and calibration, data interpretation; information spreading / awareness raising campaign especially in areas where lower SES groups are living                                             | April 2023                     | N/A                                                                                                            |  |
| Deployment and placement of sensors based on final experimental design: field tests of experiments with involved stakeholders, gathering of experiences:  Deployment in at least 2 schools Deployment of one dynamic measurement campaign with at least 15 volunteers | April 2023                     | TELRAAM sensors for<br>traffic count,<br>sensor.community sensors,<br>DEVA app, Policy<br>monitoring dashboard |  |
| Deployment and placement of sensors based on experimental design: initial field tests of experiments, gathering of experiences                                                                                                                                        | April - June 2023              | TELRAAM sensors for traffic count                                                                              |  |
| Draft of final experimental design: a final draft of the experimental setup is created based on experiences from the first experimental design                                                                                                                        | June 2023                      | N/A                                                                                                            |  |
| Assessing performance based on quantitative and qualitative KPIs from D6.1.                                                                                                                                                                                           | July - August 2023             | D6.1 suggested metrics                                                                                         |  |
| Public round                                                                                                                                                                                                                                                          | Expected timeline              | COMPAIR product                                                                                                |  |
| Established good relationships with the already involved stakeholders and opportunities to attract new ones are identified, including those from the business sector                                                                                                  | January 2022 - October<br>2024 | N/A                                                                                                            |  |
| All GDPR regulations are met when volunteers are involved                                                                                                                                                                                                             | January 2023 - October<br>2024 | N/A                                                                                                            |  |
|                                                                                                                                                                                                                                                                       |                                |                                                                                                                |  |



| Sensors' deployment in all the selected locations                                              | September - October<br>2023 | TELRAAM sensors for traffic count and SODAQ Air and NO2 sensors |
|------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|
| Data measurements and analyses are presented to policy makers                                  | November 2023               | N/A                                                             |
| An assessment on the results is performed based on quantitative and qualitative KPIs from D6.1 | Spring 2024                 | D6.1 suggested metrics                                          |

# 4.3.2. Challenges & Recommendations

Table 12 - Challenges and corresponding recommendations for the Bulgarian pilots

| Challenges                                                                                                                                                                                                                                                                                        | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change burning behaviours (i.e. heating habits of lower SES communities), specially when not living in legal housing there is no access to existing incentives - providing the necessary information and tools to change behaviours and raise awareness among people with low educational status. | We recommend directly recruiting members from communities who still participate in illegal burnings. This is easier said than done of course and few things need to be considered: <ul> <li>Members of these communities might fear contact with anything related to official entities</li> <li>They have been doing it for a while, this has become a habit.</li> <li>Simply telling them that what they do is wrong won't get them on board.</li> </ul> <li>So probably focussing on engaging 'local champions' and work with specific stakeholders to develop potential alternatives/solutions are good strategies here.</li> |
| Convincing schools to participate - we should identify the right time to start communication with schools, e.g. not during the very start of the school year when both students and teachers are overwhelmed by tasks and workload.                                                               | Reach out to teachers/teacher associations and co-define with them best timings, approaches to engaging with schools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Political situation - in the past more than 2 years there has not been a stable national government in Bulgaria which inevitably affects the situation on a local level as well.                                                                                                                  | There isn't much one can do with politically unstable situations. Perhaps inviting local advocacy political groups could be a way to foster connections with political bodies that                                                                                                                                                                                                                                                                                                                                                                                                                                               |



Parliamentary elections are expected to take place in early October. In 2023 there will be local elections (for mayors and city councils). This might affect existing relationships.

remain stable and have a certain amount of both knowledge and influence. Regardless of political inclinations, everyone needs clean air.

Digital skills of the older population - usually in Bulgaria people above the age of 80 do not possess a smartphone and do not have internet access at home.

The survey conducted is a good start to the process of understanding the local reality. We recommend expanding on this with a better distinction between vulnerable and lower SES communities and with an attempt of reaching a bigger and more diverse audience. Perhaps advertising through partners social media and other already established channels, the project's social media channels and the ECSA newsletter. This might facilitate this process.

Reaching out to charities/organisations already working with these communities might help in increasing trust and in developing successful engagement strategies.

Temporal resolution of reported data.

We recommend reaching out to scientists and experts of air quality (sensors) to better understand the trade-offs of different temporal resolutions. This balancing between benefits and costs of each should be analysed co-creatively with other pilot partners and relevant stakeholders.

Standardised data so its useful for policy making - in order for the data from low-cost sensors to be comparable and accepted by local policy makers it needs not only to be calibrated in certain way but also to be turned into the standardised EU-format for data gathering - e.g. hourly average, daily average, yearly average, etc.

These processes have to be done together with the relevant policy makers. This is another area where their input will be crucial.

Finally writing policy briefs will ensure that the data reaches and is used by policy makers, and thus accepted by decision makers.

Any data set has to be accompanied by a how to read set of instructions so as to be accessible and clear to everyone regardless of their level of expertise.



### 4.4. Athens

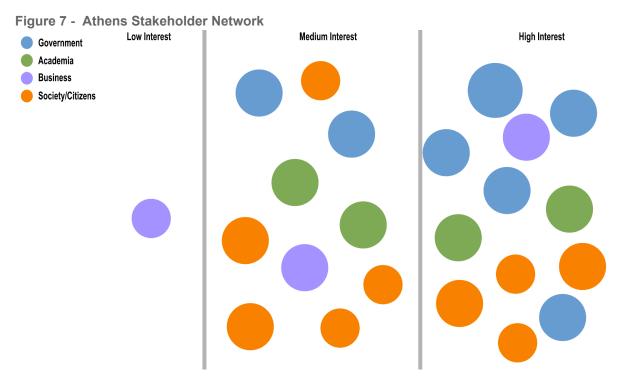
Athens is the capital of Greece. With 3 million people living in the city and the urban metropolitan area. In terms of demographics, Athens population is relatively homogeneous, with a few minorities, the biggest one being the Muslim minority. There are also Jews, Armenians, Romani, Pomaks, and Turks in the city. Athens has one of the biggest Romani concentrations in Greece. (Hellenic Statistical Authority). The objectives of the COMPAIR pilot cases in Athens is to accelerate behavioural change at a household level for the first pilot case and inviting citizens to play a role in a public dialogue for the second case.

In COMPAIR's first pilot case in Athens, we will engage end-users/citizen science participants in participating in the behavioural change towards a reduced carbon footprint and better air-quality. This will be achieved through the development of a CO2 Simulation Dashboard combined with distributed air quality sensors.

A second pilot will combine the outputs from the first pilot with the Athens Digital City Twin that will be used for simulations by using Al and performing "What-if" scenarios to support evidence-based decision making. Thus, the interactive map of the city developed by the Digital Twin approach will promote the verification of policies targeting behavioural change of residents on environmental household-habits. The outputs generated by the app, the air quality sensors and the Digital City Twin simulations aim to create a living lab in Athens connecting Public Administration, citizens, and the science community in a robust network.

According to the CS mapping from D2.2 there is a lack of local initiatives in Greece overall, however there are a lot of EU based ones focussing on a great variety of topics. Furthermore, several of the existing projects were able to recruit a huge number of participants, in some cases including schools, showing how there is great interest in citizen science. D2.3 found a few strategic documents containing measures related to citizens' involvement but unlike in other countries no documents were found in which CS was considered in the context of a strategy or plan. We are currently observing a momentum of increase in the number of CS initiatives in Greece. COMPAIR comes thus at the perfect time to break new ground.

### 4.4.1. Milestones


#### Reached milestones:

The activities in both the preparation phase and the pilot execution are distributed in the following main steps identified as reached milestones for the pilot operation, and each of the points refers to different groups of stakeholders.

Regarding the stakeholders engagement for the Athens pilot, figure 7 represents the initial mapping of the existing network in Athens. The majority of stakeholders are from the city and its contacts, agencies and various initiatives as well as from the society/citizens. This network is planned to be further expanded for the mobilisation of the end-users in the 2 foreseen districts that are initially identified to be Kipseli and Neos Kosmos according to socioeconomic criteria.



- Currently the Athens team has been following the demonstrations of the sensors' providers both in the Plenary meeting and the KickOff (Telraam and SODAQ). It is planned to receive 1 sensor per type from both partners for the closed testing that will take place in September-October 2022. SODAQ sensors are under production at the moment while Telraam are expected to be tested in the forthcoming period.
- The Carbon CO2 calculation Dashboard has been presented by UAEGEAN in both workshops organised by Athens pilot and despite there being no hands-on sessions since the tool is currently being developed, however a co-creation approach was followed. In the 1st workshop organised in February 2022 hybrid the audience stated their preferences in terms of functionalities, tools and operations to be included in the tool, while in the 2nd workshop organised in July 2022 hybrid-mockups of the current development were presented following up the comments and suggestions. Both events included fruitful feedback collection sessions from participants in the format of structured questions (on Mentimeter) and as an open discussion. The audience of the 1st workshop included mainly residents of Athens, city officials, employees of the municipality and academic partners, while the 2nd workshop exploited the IT-audience of the Samos Summit 2022 including mainly IT students, professors and academics. However, representatives of the Municipality of Athens followed the 2nd workshop.
- Similarly to the CO2 Calculation tool, the AR App of COMPAIR (DEVA) and the
  decision support tool (mockups) have been presented in both consortium meetings
  and internal meetings but are not tested yet hands on. Hence this milestone is
  ongoing.



The size of the bubble of each stakeholder is determined by their level of power, as provided by the pilots, each section a different interest level and each colour represents a different Quadruple Helix group. (adapted from D2.1 - original can be seen here)



Table 13 - Planned milestones of Athens pilot activities at each pilot stage

| Closed round                                                                                                         | Expected timeline  | COMPAIR product                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Familiarisation with the technical solutions developed by the project, both software tools and hardware e.g. sensors | November 2022      | Telraam sensors SODAQ sensors Carbon Footprint Simulation Dashboard DEVA CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard |
| Continue to follow demonstrations of the sensors' (Telraam and SODAQ)                                                | November 2022      | Telraam sensors<br>SODAQ sensors                                                                                                                 |
| Receive one sensor per type for internal testing                                                                     | November 2022      | Telraam sensors<br>SODAQ sensors                                                                                                                 |
| Test Carbon CO2 calculation Dashboard                                                                                | November 2022      | Carbon Footprint Simulation Dashboard                                                                                                            |
| Testing sensors and testing software                                                                                 | November 2022      | Telraam sensors SODAQ sensors DEVA Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard |
| Distribution of sensors                                                                                              | March - April 2023 | sensors                                                                                                                                          |
| Open round                                                                                                           | Expected timeline  | COMPAIR product                                                                                                                                  |
| Training meeting with 1 Athens district                                                                              | March - April 2023 | DEVA Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard                               |
| Distribution of sensors and deployment in 1 of the districts                                                         | March - April 2023 | 10 sensors (sensor.community)                                                                                                                    |
| Login of a group of users to the COMPAIR dashboard                                                                   | May 2023           | Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard                                    |
| Public round                                                                                                         | Expected timeline  | COMPAIR product                                                                                                                                  |
| Open call to citizens to login in COMPAIR dashboard and use/download the COMPAIR tools                               | August 2023        | DEVA                                                                                                                                             |



| (CO2 calculation, Policy dashboard, AR DEVA App)                               |                    | Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard                           |
|--------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Installation of NO2 sensors in public building in the 2 districts (6 in total) | August 2023        | SODAQ sensors                                                                                                                           |
| Training meeting with 2nd Athens district                                      | September 2023     | DEVA Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard                      |
| Distribution of sensors and deployment in 1 of the districts                   | March - April 2023 | 10 sensors (sensor.community)                                                                                                           |
| Engagement of city officials                                                   | August 2023        | Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard DEVA                      |
| Active participation of SES groups                                             | August 2023        | SODAQ sensors Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard DEVA        |
| Full deployment of the pilot in the 2 districts                                | September 2023     | DEVA SODAQ static sensors Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard |
| Distribution of all SODAQ sensors (50 sensors for both 2 districts)            | September 2023     | SODAQ static sensors                                                                                                                    |
| Follow ups with end-users and participants                                     | December 2023      | SODAQ sensors Carbon Footprint Simulation Dashboard CS Dynamic Exposure Visualisation Dashboard Policy Monitoring Dashboard DEVA        |



### 4.4.2. Challenges & Recommendations

Table 14 - Challenges and Recommendation for the Athens pilot

#### Challenges Convince citizens to participate in a pilot Consider ECSA's ten principles of citizen project by installing sensors in households, science when thinking of incentives offered by contributing to a dashboard and by using to citizens willing to participate in the pilot a relative application. Citizens, although activities. nowadays, are aware of climate change and air pollution emissions and participate in Further mapping with specific stakeholders several initiatives to this direction, should be working with the lower SES groups you convinced of the added value of their want to engage will be crucial for better contribution to air pollution diminution. understanding specific motivations for participation. This information is necessary not only for lower SES groups but for all participants. Proper use of sensors is another important A deep training session prioritising the challenge. Not all citizens groups are importance and benefits of their familiarised with technology and equipment contribution, as well as their cooperation and it must be taken into consideration city in policy making problems or possible damages by the use environmental issues making their voice to of sensors. Hence, the maintenance of the be heard, will be an asset. A provision of equipment should be provisioned for a incentives supports the process and it smooth operation including for example the stimulates active participation. replacement of batteries, potential reboots and bug fixing etc. Accessibility of the training workshops, from the location to the language used, to the colours and technology used, should be prioritised in order to achieve true inclusion and active participation of all SESs. Work in close contact with the above Ethical issues regarding users' participation are also a challenge to be tackled. Letters mentioned charities and the project DPO of consent should be prepared localised in order to ensure the procedures of data collection - not sensitive, but personal as is demographics for instance and their maintenance within project's duration. Finally, especially for the AR Application of Further communication with the technical COMPAIR, a potential challenge refers to partners regarding different ways in which

could

be

more

troubleshooting. This should not be seen as

involved

the compatibility of devices with the AR

functionality, since not all end-users have



up-to-date mobiles. Also AR function is not responsive in all outdoor environmental conditions, such as under direct sunlight or during the night.

a caveat but as a useful opportunity of how things work for all those involved.

# 4.5. Pilots commonalities and overarching goals

Throughout this deliverable and previous ones from this work package we have identified key differences in each of the pilot locations. Each has a very unique stakeholder network, different citizen science landscape and different policy agendas. However as a consortium we share a common goal. We want to achieve clean air by engaging a fair representation of society to adopt more environmentally friendly behaviours and contribute to policy making. In order to understand cultural particularities, demographics, target groups and specific actions of each pilot to reach these groups, we created the table in figure 8. This is an overview of each pilot case and how they contribute to COMPAIR's goals.

Towards that goal each pilot is putting forward different scenarios composed of different action points as stated in tables (1, 2 and 3 in section 2). For instance some pilots have already identified pilot locations as part of the ground work whilst others will soon do that as part of the Open Round. This difference between pilot strategies is not only natural but a perfect opportunity for us to learn from one another. This section is devoted to the many ways we plan to take advantage of this variety and turn them into learning opportunities that can both enrich our current pilot development but also the overall expertise of implementing CS initiatives in local communities. Furthermore we want to also emphasise amongst not only the pilot partners but also the entire consortium the importance of co-understanding, co-creation and co-designing not only as a project activity but as a project philosophy. We already have several measures established towards this end:

- Bi-weekly calls with pilots where both project and technical coordinators are present with the clear goal of informing, exchanging challenges and ideas and learning from each other
- The availability of the coordinator and tech coordinator assures a continuous translation of the development cycles.
- Several ad hoc meetings between sensor and app developers and pilot leads take place as necessary

Moving forward we will keep with this ongoing dynamics with a few additions:

- Towards the end of each round (M12, M20 and M32) we will organise a cross communication workshop between pilot partners and update the Pilot Operations Planning for the next rounds
- Once a month, as part of the pilot bi-weekly calls we will do a pilot action mismatch exercise. This works as follows:

All pilot actions are placed on a shared interactive spreadsheet (Fig 9).. Pilots are then asked to justify or think about why their pilot is not performing a certain action. This could be easily explained due to inherent differences in pilot design (Blue warning) but sometimes it's simply because one pilot has different expertise and thus different design strategies (red warning)



Figure 8 - Pilot comparison table: What are the pilot and pilot cases specifications and how do they contribute to the overarching goal of the project

| Pilot case                                                                                               | Cultural particularities (city demographics, behaviors, how it might be different from other cities even in the same country)  The Region of Attica is the first in population and the most densely                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Which vulverable groups can be engaged                                                                                                                                                                                                                                                                                                                        | How these groups can be engaged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | How it contributes to the main goals of COMPAIR                                                                                                                                                                                                                                                            | Target groups                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATHENS_1: Carbon footprint &<br>Air_Quality dashboard                                                    | populated region of Greece, since it contains the urban complex of Athens, which is the capital of Greece, bringing together 1/3 of the population of the country, thus over 3 million inhabitants according to the 2011 census. About 3,750,000 people live in the area, of which more than 95% are residents of the metropolitan area of Athens. Athens is in a need of cultural change to support and promote its green environment. The City has funched the Athens Resilience Strategy in 2014 and recently updated in 2022 that foresees the civic engagement on environmental issues.                                                                      | The citizens groups to be engaged are the wider public, however a target on senior citizens is foreseen. Senior citizens in Greece are considered over 65 years old.                                                                                                                                                                                          | City of Athens offers to citizens recreational centers for seniors named Friendship Clubs. The Clubs are located in each of the 7 Athens districts, hence at a neighbourhood level, operating daily (except for summer) and orgazing leisure activities, education, cultural events etc. DAEM is in close contact with the Clubs from the city ecosystem and previous projects piloted there. This will be the source for engagement seniors as well as the Agency Social Solidarity and Social Affairs responsible for the Clubs. | Contribute to awareness raising on air quality among citizens and on the environmental footprint of their everyday habits. Then contribution to behavioural change. Also citizens will understand the air quality and CO2 footprints aspects by correlating them to external conditions and indoor habits. | Residents of Neos Kosmos and Kipseli area initially, senior citizens, residents of other areas at a latter stage, open public                                                      |
| ATHENS 2: Urban Digital_Twin                                                                             | The Region of Attica is the first in population and the most densely populated region of Greece, since it contains the urban complex of Athens, which is the capital of Greece, bringing together 1/3 of the population of the country, thus over 3 million inhabitants according to the 2011 census. About 3,750,000 people live in the area, of which more than 95% are residents of the metropolitan area of Athens. Athens is in a need of cultural change to support and promote its green environment. The City has funched the Athens Resilience Strategy in 2014 and recently updated in 2022 that foresees the civic engagement on environmental issues. | Athens_2 will add up to the groups of Athens_1 engaging also city officials and public administration to overview the proposed policies and take part in the public dialogue. The vulnerable groups will remain senior citizens                                                                                                                               | As above in Athens_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enhance public dialogue on environmental issues, provide a tool for the public debate and facilitate citizens participation in urban policies.                                                                                                                                                             | Residents of Neos Kosmos and Kipseli area initially, senior citizens, residents of other areas at a latter stage, open public. Public administration, (iby officials and employees |
| BERLIN_1: Liveable City<br>Environments                                                                  | Berlin is the capital city of Germany with a population of 3.6 million people. It is touted as one of the largest cultural hubs of Germany and Europe, making it a vibrant city with many communities based on, among others, local and neighbourhood participation and inclusion. As the largest and most polluted city in Germany, Berlin has a strong biking community advocating for new sustainable mobility measures.                                                                                                                                                                                                                                       | The largest groups that can be engaged are cilizens with Turkish and Arabic backgrounds. Low-income cilizens and receivers of financial aid are another group that can be targeted. Furthermore, students with children receiving financial aid as well as residents living close to air and noise pollution hotspots can also be seen as a vulnerable group. | Advocacy groups supporting migrants from developing countries, people of colour, women and other vulnerable groups - particularly teachers in schools with vulnerable groups - will be approached. Communication materials (e.g. flyers) will be produced for that purpose                                                                                                                                                                                                                                                         | It will raise awareness on air pollution, the<br>benefits of sustainable mobility and<br>examine behavioural changes in light of<br>acticities revolving around data collection<br>and interpration.                                                                                                       | School children and their parents as well as cyclists                                                                                                                              |
| BERLIN 2: Car traffic-free zones                                                                         | Berlin is the capital city of Germany with a population of 3.6 million people. It is touted as one of the largest cultural hubs of Germany and Europe, making it a vibrant city with many communities based on, among others, local and neighbourhood participation and inclusion. New mobility experiments, such as parking bans or vehicle roads being turned into cycling roads, are frequently being implemented.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               | Berlin has a set of areas designated as neighbourhood management areas where vulnerable groups reside. Setting up experiments with local residents there constitutes a primary goal of Berlin's pilot activites. Advocacy groups supporting migrants from developing countries, people of colour, women and other vulnerable groups will be approached. Communication materials (e.g. flyers) will be produced for that purpose                                                                                                    | Apart from raising awareness on air pollution and new mobility concepts, it will fully engage residents in a citizen science process - from data collection and analysis to developing new technology ideas and formulating policy recommendations.                                                        | Residents of a Berlin neighbourhood<br>(Grafekiez) as well as further neighbourhood:<br>primarlly in neighbourhood management<br>areas (TBD).                                      |
| BULGARIA_1_Sofia: Mobile<br>dashboard for commuting<br>behaviours - CO2 dashboard                        | Sofia - capital city of Bulgaria, official population - 1.3 mln inh. Unofficial around 2 mln inh. 20% of country's population live here and 40% of the country GDP is produced in Sofia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | People from with minimum wage, minority groups, elderly people, school students                                                                                                                                                                                                                                                                               | With proper communication and working closely with trusted partners that are already working with these groups (NGOs, local leaders, school teachers, etc.)                                                                                                                                                                                                                                                                                                                                                                        | It will help raise awareness among the<br>general population and will engage<br>people that usually are not paying<br>attnention to air quality and environment<br>as a whole. Will be used as an<br>educational tool.                                                                                     | School students and their parents, Minority groups, elderly people                                                                                                                 |
| BULGARIA_2: Walk to school<br>(improving air quality around<br>schools) - school bus service in<br>Sofia | Sofia - capital city of Bulgaria, official population - 1,3 mln inh. Unofficial around 2 mln inh. 20% of country's population live here and 40% of the country GDP is produced in Sofia. School bus routes service will be pi                                                                                                                                                                                                                                                                                                                                                                                                                                     | School students and their parents                                                                                                                                                                                                                                                                                                                             | With proper communication with the school teachers, educational materials and workshops                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gathering data on air pollution around schools and showing how traffic relates to that.                                                                                                                                                                                                                    | School students and their parents                                                                                                                                                  |
| BULGARIA_3_Sofia:<br>Comprehensive communication<br>campaign - awareness raising<br>campaign             | Sofia - capital city of Bulgaria, official population - 1.3 min inh. Unofficial around 2 min inh. 20% of country's population live here and 40% of the country GDP is produced in Sofia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Citizens of Sofia - minimum wage workers, children, elderly people                                                                                                                                                                                                                                                                                            | With catchy images and graphics that explain in an easy to understand way air pollution and its effects on heath and well-being.                                                                                                                                                                                                                                                                                                                                                                                                   | It will raise awareness and promote the tools that will be developed within the COMPAIR project. Will be used to explain the relation between traffic and air pollution and provide tips and tricks on how every citizen can help improvement of air quality in the city.                                  | General population, citizens of Sofia                                                                                                                                              |
| FLANDERS_1: Schoolstreet -<br>local mobility impact                                                      | Herzele: small municipality (18.477 cilizens), with an increasing number of residents for whom the current traffic infrastructure is not designed. This causes frustration among residents about safety due to the increasing traffic density and, as a result, poorer air quality, resulting in more traffic, loses safe traffic situations                                                                                                                                                                                                                                                                                                                      | through the school the students maybe?                                                                                                                                                                                                                                                                                                                        | to ask who is interested in measuring traffic and air quality with sensors                                                                                                                                                                                                                                                                                                                                                                                                                                                         | raising awareness of the problem of air quality and traffic. And the link between the two.                                                                                                                                                                                                                 | citizens, teachers and students in the neighborhood of the school.                                                                                                                 |
| FLANDERS_2: Dynamic exposure                                                                             | Herzele (see above) & Ghent: big citie (263.429 citizens), with a lot of diversity (gender, age, culture, language, religion), with a local air- and mobility plan (purpose: better air quality & fewer cars)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | percentage GOK-students (the GOK indicators take into account the mother's diploma, the home language)                                                                                                                                                                                                                                                        | Teachers can make the students aware of this by taking measurements together, teaching about this The students then enter into a dialogue about this with each other, teachers, parents, neighbours                                                                                                                                                                                                                                                                                                                                | raising awareness of the problem of air quality and traffic. And the link between the two.                                                                                                                                                                                                                 | students, citizens, teachers, local policy makers                                                                                                                                  |
| FLANDERS_3: Urban Digital Twin                                                                           | Herzele & Ghent (see above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | citizens of the cities                                                                                                                                                                                                                                                                                                                                        | interested citizens in the project can see real time measurements of air quality and traffic                                                                                                                                                                                                                                                                                                                                                                                                                                       | raising awareness of the problem of air<br>quality and traffic. And the link between<br>the two.                                                                                                                                                                                                           | students, citizens, teachers, local policy makers, local marchants                                                                                                                 |



**Figure 9 - Subsection of the mismatch table:** Here only the closed round actions are shown as this is for representation purposes only.

| WHAT                                                                 | Sofia | Plovdiv | Berlin | Flanders | Athens | Warning     |
|----------------------------------------------------------------------|-------|---------|--------|----------|--------|-------------|
| CLOSED ROUND                                                         | x     | x       | x      | x        | x      | х           |
| Benchmark study of commercially available air quality sensors        |       |         |        | x        |        | Warning     |
| Identify locations for schoolstreet                                  |       |         |        | х        |        | Makes sense |
| Identifying the pilot locations                                      | x     | х       |        |          |        | Makes sense |
| Pilot implementation in locations of the city                        |       |         |        |          | x      | Warning     |
| Demonstrating the impact of local measures/policy on AQ and mobility | x     | x       |        |          |        | Warning     |
| Experimental design and mockups                                      | х     | х       | х      | х        | х      | Complete    |
| Involve representatives of different SES groups                      | x     | х       | х      | x        | х      | Complete    |
| Available sensors tested                                             | x     | x       | х      |          | х      | Warning     |
| pre-pilot implementation to finetune tools and fix bugs              | x     | x       |        |          | х      | Warning     |
| preparational visits to handover sensors and demonstrate tools       | x     |         |        |          | х      | Warning     |
| Testing of Carbon tools                                              |       |         |        |          | х      | Makes sense |

Each pilot has an 'x' for actions they have planned. The warning column will raise a warning whenever there is a pilot without the 'x'. This warning will be blue when the mismatch is due to differences in pilot design or red when pilots need to justify it. The action tables presented as part of section 2 have already gone through the first round of justifications and have been updated accordingly. As we move forward we will dive deeper into the nature of these differences and what we can learn from the different outcomes. These learning will then be considered when updating the pilot operation plan.

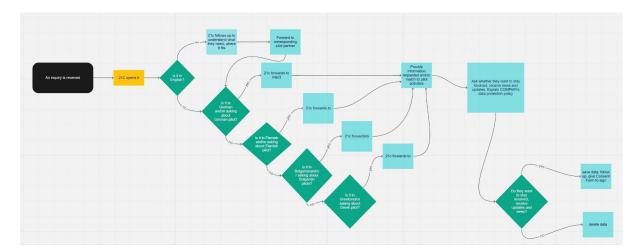
- The Pilot Operation Plan will be discussed in all pilot calls so we can monitor pilot development. Pilots will be asked to provide an overview of what has been completed, what is delayed and needs further work and how likely it is that what is planned will be accomplished. The authors of this deliverable will ensure that all actions are accounted for and updated whenever necessary.
- Together with the communication team we will invite pilot leads to share their experiences through participation in CS webinars, production of social media content for the project channels and blogs for the website.

.



## 4.6. Managing expressions of interest

Periodically, the communications team (21C) receives external interest in volunteering opportunities announced on the project website. People submit a contact form and usually say in which city they want to volunteer, but sometimes they do not. When this happens, pilot preference can be deduced from the language of the message or included contact details e.g. phone number. The standard procedure followed so far has been this: Upon receiving an expression of interest (EoI), 21C forwards the message to the relevant pilot lead (if preference is known) or follows-up with the sender to clarify their preferred city, and then forwards the message. What happens afterwards with EoI and personal data has not been defined in any of the previous deliverables. The pilot operations plan is a good place to set out an algorithm for processing future EoIs, which one can expect will only grow in number as the project unfolds.


As the project progresses through the different rounds the need to adjust or update this process might appear, however currently this is what we propose:

- 21C receives an EoI and determines whether a) it is valid we did receive job inquiries in the past so some filtering will be needed, and b) any clarification is required as regards location. Valid EoIs with a clear city preference will be forwarded to a relevant pilot lead. When the preferred city is not clear, 21c will clarify this.
- Local teams send a welcome email to the volunteer, in national language if necessary, and use the opportunity to:
  - Find out about participant's motivation, skills, capacity, level of interest i.e. are they interested in taking air quality measurements, coming to a workshop, using an app, or simply staying informed about the outcomes? Or maybe all of the above. For consistency and cross-border comparison, we may want to create a standardised survey for pilots to use in this initial outreach.
  - Explain COMPAIR's data protection policy and how individual data will be handled i.e. what records will be kept, for how long, where, who will have access to this information, and so on. A copy of our data protection policy may need to be included in the email.
  - Introduce informed consent procedures. An informed consent form will need to be signed if a person opts for active participation e.g. attending workshops, installing sensors, taking measurements, as opposed to simply following the project as a newsletter subscriber. The form will provide key information about COMPAIR and planned citizen science activities in a chosen pilot, including what will be expected of them, to help individuals decide whether they should volunteer or not. This will be done in consultation with the project's DPO.

A Miro collaboration board where this process is captured is available in figure 10.



Figure 10 - Snapshot of the MIRO Collaboration dashboard regarding the flowchart of expression of interest. Original can be found <a href="https://example.com/here.">here.</a>





## 5. Conclusion

The Pilot Operations Plan defines useful guidelines with key stages and recommendations for all pilots to successfully contribute towards **COMPAIR**s mission - increase societal engagement in the fight for clean air. This deliverable, part of WP2 summarises relevant work previously done throughout the groundwork together with freshly collected input from all the pilot partners to define the next steps for both the closed, open and public rounds.

With this document we established useful guidelines and recommendations for all COMPAIR pilots, to align with COMPAIR's vision, mission and overarching objectives. We present a detailed account on milestones reached, challenges and useful recommendations to overcome them, both general and pilot specific. Together with the pilot partners we defined the next milestones to reach as we move forward to the next rounds. These focused mainly on training, sensor matching, engagement events and awareness raising, among others.

Importantly, we found the preparation of this deliverable a successful exercise of fostering pilot cross communication. This communication among pilots has been active since the beginning of the project with biweekly meetings where pilots share with each other their milestones, successes and challenges. Given its importance we devoted a specific section (4.5) on this very topic highlighting current effort to foster cross communication between pilots together with recommendations of further actions aiming at strengthening it throughout the project. An important exercise developed as part of this section is the mismatch table (Figure 9). This table gives us a clear overview of the actions that are not part of every pilot and provides an opportunity for pilots to consider their own action plan and ways of improving it. In addition, as a way to ensure the aims and recommendations identified/developed as part of this deliverable are achieved, we commit to discuss it and analyse it often in our regular pilot meetings. We will update, whenever needed, our action tables and KPIs and will strive to overcome our challenges through co-creative processes. The tables presented in this deliverable will continue to be relevant as living documents where pilot leaders can expand on their planned/achieved milestones.

A key aim of **COMPAIR** is the engagement of lower SES groups. This is an important goal defined in our GA and further developed on D9.2 where we state our commitment of each pilot ensuring ½ of their citizen science participants from lower SES groups. This means as a consortium we need to work together in definitions, engagement strategies and ethical considerations whether referred to in the GDPR or not. Section 3 is devoted to this topic where a set of recommendations targeted at this very important goal were developed. These focus on efforts to better define what we mean and who we need to involve to make that a reality. We also state the need and intention to put in the effort to learn as a consortium the necessary skills to successfully carry out our plan.

As we move forward in COMPAIR and in citizen science projects, we realise how important it is to follow certain guidelines that ensure CS practitioners take responsibility for moral and ethical concerns and do not put in place activities that accidentally exclude parts of society. The 10 principles of citizen (ECSA 2015) science co-created by ECSA and colleagues exist precisely for this and this is why we think in the future all citizen science projects should read and internalise them already during the proposal writing phases. The 10



principles of citizen science are not a checklist, but rather a code of conduct that helps us remain reliable and accountable. Furthermore they also provide a useful mindset when working towards not only achieving but maintaining high engagement.

Furthermore COMPAIR is explicitly and actively trying to reach all SES. Ensuring a fair representation of society is ever more important if we truly want to contribute to the improvement of existing policies and regulations. This is a challenge in itself, engaging diverse audiences and ensuring everyone can participate is very time consuming and takes a lot of effort.

With the recommendations offered in this deliverable we aim to build a collective mind-set in boldly going forward with the workload and tackling these challenges. We are certain that we will set the stage for current and future European CS projects, especially reaching those that traditionally are "hard(er)" to reach. This should serve as inspiration to all citizen science projects as we move forward to more democratised and inclusive science.

COMPAIR pilots have a unique opportunity to impact everyone's current view of how they affect and are affected by air quality and all the local policies around it. As a consortium we have mapped existing local and global initiatives, we have mapped the existing contribution of CS in policy recommendations and have set for ourselves an ambition goal for generating democratic and inclusive solutions for improving air quality. We are committed to sharing both our challenges and our successes openly as we move forward and both contribute to this important conversation with the CS community and build upon these in all our future projects.



## 6. References

Amt für Statistik. (2020, February). Einwohnerinnen und Einwohner im Land Berlin am 31.

Dezember 2019 [Statistischer Bericht]

https://download.statistik-berlin-brandenburg.de/3d9a920b0980bd0f/01f3c6a853b2/S

B A01-05-00 2019h02 BE.pdf

ECSA European Citizen Science Association (2015). Ten Principles of Citizen Science.

Education in Flanders

https://www.onderwijs.vlaanderen.be/en/node/1028

Ethnic groups and languages, statistics Flanders

https://www.britannica.com/place/Belgium/Ethnic-groups-and-languages

Population below the poverty threshold, Britannica

https://www.vlaanderen.be/en/statistics-flanders/income-and-poverty/population-below-the-poverty-threshold

Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin, Referat Freiraumplanung und Stadtgrün. (2021, December 31). Anteil öffentlicher Grünflächen in Berlin. [Statistischer Bericht]

https://www.berlin.de/sen/uvk/suche.php?q=Bericht+Nr.+05+B

Statistics about Greece population, hellenic Statistical Authority

https://www.statistics.gr/en/home